header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

PHYSIOLOGICAL MECHANICAL LOADING FROM VOLUNTARY WHEEL RUNNING PROMOTES INCREASED PLASMA MEMBRANE DISRUPTIONS IN OSTEOCYTES

The British Orthopaedic Research Society (BORS) Annual Meeting, Leeds, England, September 2018.



Abstract

Osteocytes direct bone adaptation to mechanical loading (e.g., exercise), but the ways in which osteocytes detect loading remain unclear. We recently showed that osteocytes develop repairable plasma membrane disruptions (PMD) in response to treadmill-running exercise, and that these PMD initiate mechanotransduction. As treadmill running is a non-voluntary activity for rodents, our current goal was to determine whether osteocytes develop PMD with voluntary wheel running as a better model of physiological exercise.

Male and female Hsd:ICR mice from lines selectively bred (>75 generations) to demonstrate high voluntary wheel running (“High Runners”) or non-selected control lines (“Control”) were studied (n=9 to 12 mice per sex per line, 4 lines each). At 12 weeks of age, half of the animals within each group were provided access to running wheels for 6 days while remaining mice had no wheel access. Tibias were collected at sacrifice and bone mineral density was analyzed by DXA. Osteocyte PMD were quantified by immunochemistry for intracellular albumin. Groups were compared with 3-factor ANOVA.

Voluntary exercise (wheel access) significantly increased osteocyte PMD (+16.4%, p=0.013). PMD-labelled osteocytes did not differ between sexes (p=0.415). Male mice had significantly greater BMD (p=0.0007) and BMC (<0.0001) than females. Interestingly, mice with wheel access had significantly lower BMD and BMC compared to mice without wheel access (p<0.004), and high runner lines had significantly lower BMD (p=0.001) and BMC (p<0.0001) than control lines. This may reflect new bone formation in the exercising mice, as newly formed bone is less mineralized than older bone.

Data from this experiment support the idea that loading-induced disruptions develop in the osteocyte plasma membrane during both voluntary (wheel running) and forced (treadmill, shown previously) physical activity. These studies support the role of plasma membrane disruptions as a mechanosensation mechanism in osteocytes.