header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

VOLTAGE-GATED ION CHANNELS IN THE INTERVERTEBRAL DISC

The Society for Back Pain Research (SBPR) Annual General Meeting 2019, ‘From Bench to Bedside’. Sheffield, England, 5–6 September 2019.



Abstract

Purpose and Background

The intervertebral disc is constantly subjected to forces generated by movement. But degeneration can disrupt normal biomechanics, generating uneven and complex loading patterns. Evidence suggests that these forces are converted into voltages through different mechanisms, such as streaming potentials. This implicates voltage-gated ion channels in the biological remodelling response of the disc to loading. These signalling pathways have not been studied, and this incomplete understanding of disc mechanotransduction may hinder regenerative therapies. The purpose of this study is to identify and determine the role of voltage-gated ion channels in the intervertebral disc and to investigate any changes in degeneration.

Methods and Results

Primary bovine and human disc cells were cultured in monolayer or alginate beads for experiments. Cells were treated with altered osmolarity alone or in combination with IL-1β. Ion flux was measured through calcium influx and will be further investigated using the xCelligence RTCA CardioECR. Immunohistochemistry was performed on human and bovine discs to evaluate expression levels of ion channels. RNA was extracted from bovine NP cells and will be analysed through PCR/Microarray for gene expression.

Conclusions

Preliminary results show that the Cav2.2 channel is expressed across the human disc, and is altered by degree of degeneration. Treatment with IL-1β may partly hinder the increase in calcium signalling of disc cells in response to lower osmolarity conditions. The presence of voltage-gated ion channels in the disc has been demonstrated for the first time. The role of these channels will be investigated through measuring ion flux with channel inhibitors across different culture treatments.

No conflicts of interest exist.

This research was supported by funding from the Society for Back Pain Research through the Travel Award 2019 and from the Irish Research Council under the Government of Ireland Postgraduate Scholarship Programme (GOIPG/2018/2416).


Email: