header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Hip

KIF26B IS NECESSARY FOR OSTEOGENIC TRANSDIFFERENTIATION AND MINERALIZATION IN AN IN VITRO MODEL OF PATHOLOGICAL OSSIFICATION

British Hip Society (BHS) Meeting, Derby, England, March 2018



Abstract

Background

Heterotopic ossification (HO) is lamellar bone formation in the soft tissues following trauma or joint replacement for osteoarthritis (OA). A genome wide association study of HO patients after total hip arthroplasty for OA has identified Kinesin Family Member 26B (KIF26B) as a gene associated with HO severity. KIF26B has previously been associated with HO in mice.

Hypothesis and aims: We hypothesised that Kif26b regulates the osteogenic trans-differentiation of myoblasts; a possible mechanism of HO. Using an in vitro model, we wished to establish whether Kif26b is involved in HO formation and to explore the molecular mechanism.

Methods

We developed CRISPR/Cas9 mediated Kif26b knockout (KO) C2C12 myoblasts. Wild type (WT) and KO cells were transdifferentiated towards an osteogenic lineage using BMP-2 for 24 days. The effect of Kif26b KO on mineralisation was quantified by calcium staining. The mean difference (±SEM) in gene expression between WT and KO lines was compared with ANOVA.

Results

qPCR and western blotting confirmed Kif26b knockout. Kif26b deficient cells produced substantially less mineral versus WT in response to BMP-2 (34.71% ±3.62%, n=12, P<0.0001). At day 8 of osteogenic differentiation, loss of Kif26b abrogated Osterix (113.6 ±6.781 n=5, P<0.0001), Osteocalcin (737.9 ±84.25, n=5, P<0.0001) and Alkaline phosphatase (6989 ±365.7, n=5, P<0.0001) expression, and down regulated Runx2 (2.725 ±0.7724, n=5, P<0.0052) and Collagen type I (7.25 ±1.154, n=5, P<0.0001) expression relative to WT. The knockout cells also appeared morphologically different. Compared to WT, the Kif26b KO cells displayed a less osteoblast-like morphology during transdifferentiation.

Conclusion

Our findings demonstrate an undescribed function for Kif26b as a critical regulator of pathological ossification, with a putative role in HO pathogenesis after THA.


Email: