header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

CARBON FIBRE-REINFORCED SIC COMPOSITES FOR WEAR-RESISTANT ORTHOPAEDIC BEARING APPLICATIONS

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

To date there has been no material for endoprosthetics providing excellent resistance to abrasion and corrosion combined with great tensile strength, fracture toughness, and bending strength, as well as adequate biocompatibility. Carbon-fiber-reinforced silicon carbide (C/SiC, C/C-SiC or C/SiSiC) is as a ceramic compound a potentially novel biomaterial offering higher ductility and durability than comparable oxide ceramics.

Aim of this investigation was to test the suitability of C/SiC ceramics as a new material for bearing couples in endoprosthetics. One essential quality that any new material must possess is biocompatibility. For this project the in-vitro biocompatibility was investigated by using cuboid like scaffolds made of CMC. To determine whether the material is suited as a lubricant partner in endoprosthetics, we measured its abrasion coefficient and wear tolerance against various antibodies. The C/SiC samples tested were produced via the Liquid Silicon Infiltration (LSI) of pyrolized porous fiber preforms made by warm-flow pressing free-flowing granulates on a hydraulic downstroking press with a heated die of the type HPS-S, 1000 kN. After preparation of the composites, the tribological characteristics are determined. Flexural strength was determined at room temperature according to DIN685-3 with an universal testing machine Z100 and the Young”s -modulus was carried out via resonant frequency-damping analysis RFDA. The samples”surface as well as cell adhesion and cell morphology were assessed via ESEM. The human osteoblast-like cell line MG-63 and human ostoeblast were used for cel culture ecperiments (WST, Live/dead, Cytotoxicity, cell morphology). Based on the raw data the mean value and the standard deviation were calculated. The Mann-Whitney-U-Test was used to evaluate the differences between experiment and control samples. The flexural strength at room temperature is approx. 180 MPa, while the elongation at break is about 0.13%. The Young”s modulus is detected between 120 and 150 GPa. The density lies between 2.5 and 3.0 g/cm3. We noted a friction coefficient µ between 0.31. The cell lines exhibited no morphological alterations, and adhered well to the C/SiC samples. Vitality was not impaired by contact with the ceramic composite. Cell growth was observed evenly distributed over a 21-day period. In the future, investigators aiming to apply this composite in endoprosthetics will have to focus on its efficacy in conjunction with sudden, strong demands, and long-term performance in bodily fluids within joint simulators, etc. In conclusion: C/SiC can definitely be considered a new material with genuine potential for use in endoprosthetics.


Email: