header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

MAGNETIC RESONANCE IMAGING AS AN AUXILIARY TOOL FOR EVALUATION OF TENDON REPAIR IN AN ANIMAL MODEL USING COLLAGEN-BASED SCAFFOLDS

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

The biomechanical evaluation of tendon repair with collagen-based scaffolds in rat model is a common method to determine the functional outcome of the tested material. We introduced a magnetic resonance imaging (MRI) approach to verify the biomechanical test data. In present study different collagen scaffolds for tendon repair were examined.

Two collagen test materials: based on bovine stabilized collagen, chemically cross-linked with oriented collagenous fibres (material 1) and based on porcine dermal extracellular matrix, with no cross-linking (material 2) were compared. The animal study was approved by the local review board. Surgery was performed on male Sprague-Dawley rats with a body weight of 400 ± 19 g. Each rat underwent a 5 mm transection of the right Achilles tendon. The M. plantaris tendon was removed. The remaining tendon ends were re-joined with a 5 mm scaffold of either the material 1 or 2. Each scaffold material was sutured into place with two single stiches (Vicryl 4–0, Ethicon) each end. A total of 16 rats (n= 8 each group) were observed for 28 days follow up. The animals were sacrificed and hind limbs were transected proximal to the knee joint. MRI was performed using a 7 Tesla scanner (BioSpec 70/30, Bruker). T2-weighted TurboRARE sequences with an in-plane resolution of 0.12 mm and a slice thickness of 0.7 mm were analysed. All soft and hard tissues were removed from the Achilles tendon-calcaneus-foot complex before biomechanical testing. Subsequently, the specimens were fixed in a materials testing machine (Z1.0, Zwick, Ulm, Germany) for tensile testing. All tendons were preloaded with 1 N and subsequently stretched at a rate of 1 mm/s until complete failure was observed. Non-operated tendons were used as a control (n=4).

After 28 postoperative days, MRI demonstrated that four scaffolds (material 1: n=2, material 2: n=2) were slightly dislocated in the proximal part of hind limb. In total five failures of reconstruction could be detected in the tendon repairs (material 1: n=3, material 2: n=2). Tendons augmented with the bovine material 1 showed a maximum tensile load of 57.9 ± 17.9 N and tendons with porcine scaffold material 2 of 63.1 ± 19.5 N. The native tendons demonstrated only slightly higher loads of 76.6 ± 11.6 N. Maximum failure load of the tendon-scaffold construct in both groups did not differ significantly (p < 0.05). Stiffness of the tendons treated with the bovine scaffold (9.9 ± 3.6 N/mm) and with the porcine scaffold (10.7 ± 2.7 N/mm) showed no differences. Stiffness of the native healthy tendon of the contralateral site was significantly higher (20.2 ± 6.6 N/mm, p < 0.05). No differences in the mechanical properties between samples of both scaffold groups could be detected, regardless of whether the repaired tendon defect has failed or the scaffold has been dislocated.

The results show that MRI is important as an auxiliary tool to verify the biomechanical outcome of tendon repair in animal models.


Email: