header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

IS IT POSSIBLE TO DEVELOP ALLOGRAFT DURA MATER SCAFFOLD BY DECELLULARIZATION METHOD?

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Dura mater is a thick membrane that is the outermost of the three layers of the meninges that surround the brain and spinal cord. Appropriate dural healing is crucial to prevent cerebrospinal fluid leaks but the entire process has been barely understood so far. Understanding of dural healing and tissue neoformation over the dural grafts, which are usually used for duraplasty, is still partial. Therefore, implantation of decellular dura mater (DM) to recipient from different donor and vitalization with recipient”s mesenchymal stem cells for the treatment of tissue on transplantation process is significant approach. This approach prevents immunological reactions and provides long-term stabilization. According to this study, it is believed that this approach will provide DM healing and become crucial in DM transplantation.

The aim of this study was to develop a new construct by tissue engineering of the human DM based on a decellular allograft. Thus human DM collected from forensic medicine and decellularized using the detergent sodium dodecyl sulfate (SDS) in the multiple process of physical, enzimatic and chemical steps. Decellularization were exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris-HCl buffer, 0.1% (w/v) SDS in hypotonic buffer and hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. As a result of all these processes, cellular components of DM were removed by preserving the extracellular matrix without any significant loss in mechanical properties. Based on the histological analysis of the decellularized DM revealed the absence of visible whole cells. Collagen and glycosaminoglycan (GAG) contents of decellular DM evaluated histological staining by Masson Trichrome and Alcian blue respectively. Also biochemical tests were carried out by spectrophotometry (Quickzym Biosciences, The Netherlands) and total GAG content were analyzed by 1.9 dimethylmethylene blue assay. The histoarchitecture was unchanged, and there were no significant changes of total collagen and GAG content. Biomechanical properties were determined by tensile tests, which has confirmed the retention of biomechanical properties following decellularization. The mean tensile strengths were 7,424±4,20 MPa for control group, 5,254±2,068 MPa for decellularization group. There was no statistically significant difference between tensile strength (p=0,277) and tissue thickness (p=0, 520) for both group.

In conclusion, this study has developed biomechanically functional decellularized DM scaffold for use in DM repair. In addition, this study is a part of the progressing study and additional studies investigating the biocompatibility performance of the decellularized DM scaffold and there is need for in vivo studies.

Keywords

Dura mater, Decellularization, Allografts, Scaffolds, Tissue Engineering


Email: