header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

NOVEL APPROACH TO SCAFFOLDS FOR ARTICULAR CARTILAGE REPAIR

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Use of scaffolds for articular cartilage repair (ACR) has increased over the last years with many biomaterials options suggested for this purpose. It is known that scaffolds for ACR have to be optimally biodegradable with simultaneous promotion of chondrogenesis, favouring hyaline cartilage formation under rather complex biomechanical and physiological conditions. Whereas improvement of the scaffolds by their conditioning with stem cells or adult chondrocytes can be employed in bioreactors, “ideal” scaffolds should be capable of performing such functions directly after implantation. It was previously considered that scaffold structure and composition would be the best if it mimics the structure of native cartilage. However, in this case no clear reparative stimuli are being imposed on the scaffold area, which would drive chondrocytes activity in a desired way.

In this work, we studied new xeno-free, recombinant human type III collagen-laden polylactide (PLA) mesh scaffolds, which have been designed, produced, and biomechanically optimized in vitro and in vivo validated in a porcine and equine model. The scaffolds were additionally assessed for relative performance simulated synovial fluids for both human conditions and veterinary cases.

It was experimentally shown that success of the scaffolds in ACR eventually require lower stiffness than surrounding cartilage yet matching the strain compliance, different in static and dynamic conditions. This ensures an optimal combination of load transfer and oscillatory nutrients supply to the cells, which otherwise is difficult to rely on just with a passive diffusion in avascular cartilage conditions. The results encourage further development of such scaffold structures targeted on their best clinical performance rather than trying to imitate the respective original tissue.

The authors would like to thank Finnish Agency for Innovation (Tekes) for providing financial support to this project. A.Z. also acknowledges Teknos Foundation (Finland) for the scholarship.


Email: