header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SUBJECT-SPECIFIC HIP JOINT KINETICS DURING DEEP SQUATTING IN YOUNG ATHLETIC ADULTS

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Introduction

A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). During DS, the hip flexion angle approximates the functional range of hip motion. In some hip morphologies this femoroacetabular conflict has been shown to occur as early as 80° of hip flexion. So far in-vivo HJRF measurements have been limited to instrumented hip implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). Clearly, young adults have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since hip loading data on this subgroup of the population is lacking and performing invasive measurements would be unfeasible, this study aimed to report a personalised numerical model solution based on inverse dynamics to calculate realistic in silico HJRF values during DS.

M&M

Fifty athletic males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans of the lower extremities with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model. Bone geometries, semi-automatically segmented from MRI, and corresponding markers were incorporated into the template human model by an automated nonlinear morphing. Furthermore, a state-of-the-art TLEM 2.0 dataset, included in the Anybody Managed Model Repository (v2.0), was used in the template model. The subject-specific MoCap trials were processed to compute squat motion by resolving an overdeterminate kinematics problem. Inverse dynamics analyses were carried out to compute muscle and joint reaction forces in the entire body. Resulting hip joint loads were validated with measured in-vivo data from Knee bend trials in the OrthoLoad library. Additionally, anterior pelvic tilt, hip and knee joint angles were computed.

Results

A preliminary set of results (20 out of 50 subjects) was analysed. The average HJRF was 3.42 times bodyweight at the peak of DS (95% confidence interval: 2.99 – 3.85%BW). Maximal hip and knee flexion angles were 113° (109.7°–116.8°) and 116° (109.4 – 123.0°) respectively. The anterior pelvic tilt demonstrated a biphasic profile with peak value of 33° (28.1° – 38.4°).

Discussion

A non-invasive and highly personalised alternative for determining hip loading was presented. Consistently higher HJR forces during DS in young adults were demonstrated as opposed to the Orthoload dataset. Similarly, knee and hip flexion angles were much higher, which could support the increase in HJRF. We can conclude that DS hip kinetics in young adults clearly differ from the typical total hip arthroplasty population.


Email: