header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

A NOVEL POWERED ACETABULAR REVISION SYSTEM VERSUS MANUAL OSTEOTOME: AN IN VITRO COMPARISON

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Introduction

The objective of this study was to compare the performance of the Explant Acetabular Cup Removal System (Zimmer), which has been the favored system for many surgeons during hip revision surgery, and the new EZout Powered Acetabular Revision System (Stryker).

Methods

54mm Stryker Trident® acetabular shells were inserted into the foam acetabula of 24 composite hemi-pelvises (Sawbones). The hemi-pelvises were mounted on a supporting apparatus enclosing three load cells. Strain gauges were placed on the hemipelvis, on the posterior and the anterior wall, and on the internal ischium in proximity to the acetabular fossa. A thermocouple was fixed onto the polar region of the acetabular component. One experienced orthopaedic surgeon and one resident performed mock revision surgery 6 times each per system.

Results

Statistical analysis was conducted using Tukey's range test (HSD). The maximum force transferred to the implant was more than 4X lower with the EZout System regardless the surgeon experience (p=1.0E-08). Overall, recorded strains were lower for the EZout System with the higher decrease in strain (5X) observed at the posterior wall region(p=2E-08). The temperature at the interface was higher for the EZout System but never more than 37°C. Total removal time was on average reduced by a third with the EZout System (p=0.01). The calculated torque was lower for the EZout System. The amount of foam left on the cup after removal, which mimics the compromised bone, was 2.5X higher on average for the Explant System with most of the foam concentrated in the polar region. Lastly, it was observed that the polar region of each implant was reached by rotating the EZout System handpiece within a very narrow cylinder of space centered along the axis of the acetabular component compared to the Explant System, which required movement of the pivoting osteotomes within a large cone-shaped operating envelope.

Discussion

Quantitatively, the EZout System required lower force, producing lower strains in the surrounding composite bone. Higher impact forces and associated increased strains may increase fracture risk. Qualitatively, the Explant System required a greater cone of movement than the EZout System requiring more space for the surgeon to leverage the handle of the tool. In addition, both surgeon and resident felt substantially greater exhaustion after using the Explant System vs. the EZout System. The resident compensated for the increased workload of the Explant with time, the experienced surgeon with force. The learning curve for both experienced surgeon and resident was also much shorter with the EZout System as shown by the close force values between the experienced surgeon and resident.

Conclusion

Based on the results of this in vitro model, the EZout Powered Acetabular Removal System may be a reasonable alternative to manual removal techniques


Email: