header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

LOSS OF P53 COMPENSATES OSTEOPAENIA IN MURINE MYSM1 DEFICIENCY

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 2 of 2.



Abstract

Histone modifications critically contribute to the epigenetic orchestration of bone development - in part by modifying accessibility of genes to transcription factors. Based on the previous finding that histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue development, we here analyzed the molecular and cellular mechanisms of Mysm1-p53 interplay in bone development.

The bone phenotype of 4–5 week-old Mysm1-/- (MKO), Mysm1-/-p53-/- (DKO) and corresponding wildtype (WT) mice was determined using µCT and histology. Primary osteoblasts, mesenchymal stem cells (MSCs) and osteoclasts were isolated from long bones to assess cell proliferation, differentiation, apoptosis and activity. Statistics: one-way ANOVA, p<0.05.

MKO mice displayed an osteopenic bone phenotype compared to WT (BV/TV: 5.7±2.9 vs. 12.5±4.2, TbN: 1.3±0.6 vs. 2.7±0.7 1/mm, respectively), and these effects were abolished in DKO mice (BV/TV: 17.8±2.6, TbN: 3.7±0.4 1/mm). MKO mice compared to WT also showed both in vitro and in vivo disturbed osteoclast formation (in vitro: 1.5±1.2 vs. 9.9±1.8 OcN/mm2, in vivo OcN/BPm: 1.4±1.0 vs. 3.0±0.7 cells/mm, respectively) accompanied by increased apoptosis and DNA damage; additional p53 knockout attenuated these effects (7.8±1.8 OcN/mm2 and OcN/BPm: 2.2±1.0 cells/mm). Primary osteoblasts from both MKO and DKO mice showed decreased expression of the transcription factor Runx2 and of the osteogenic markers. ChIP-Seq analysis revealed direct binding of Mysm1 to Runx2 promoter regions in osteoblasts, implying that Mysm1 here regulates osteogenic differentiation. In contrast, MKO-MSCs differentiation did not differ from WT, but DKO-MSCs displayed a significantly increased expression of Alpl, Bglap and Runx2. The different effects of Mysm1-/- in MSCs and osteoblasts presumably resulted from the lower expression level of Mysm1 in MSCs in comparison to mature osteoblasts.

Thus, our data demonstrate that H2A deubiquitinase Mysm1 is essential for the epigenetic control of bone development via distinct mechanisms: 1) In osteoclasts, Mysm1 is involved in maturation of osteoclast progenitors and osteoclast survival. 2) In osteoblasts, Mysm1 directly controls Runx2 expression, thereby explaining osteopenic phenotype of MKO mice. 3) In MSCs, Mysm1 may play an inferior role due to low expression level. However, loss of p53 increases Runx2 expression during MSC differentiation, leading to normal bone formation in DKO mice.


Email: