header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE PREDOMINANT EFFECT OF BONE DENSITY ON THE FIXATION OF ANATOMICAL GLENOIDS IN TOTAL SHOULDER ARTHROPLASTY: COMBINED EXPERIMENTAL AND NUMERICAL ANALYSIS OF TWO FIXATION TYPES

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 1 of 2.



Abstract

Introduction

Glenoid loosening, still a main complication for shoulder arthroplasty, was suggested to be related implant design, surgical aspects, and also bone quality. However, typical studies of fixation do not account for heterogeneity in bone morphology and density which were suggested to affect fixation failure. In this study, a combination of cyclic rocking horse tests on cadaver specimens and microCT-based finite element (microFE) analysis of specimens of a wide range of bone density were used to evaluate the effects of periprosthetic bone quality on the risks of loosening of anatomical keeled or pegged glenoid implants.

Methods

Six pairs of cadaveric scapulae, scanned with a quantitative computer tomography (QCT) scanner to calculate bone mineral density (BMD), were implanted with either cemented anatomical pegged or keeled glenoid components and tested under constant glenohumeral load while a humeral head component was moved cyclically in the inferior and superior directions. Edge displacements were measured after 1000, 4000 and 23000 test cycles, and tested for statistical differences with regards to changes or implant design. Relationships were established between edge displacements and QCT-based BMD below the implant. Four other specimens were scanned with high-resolution peripheral QCT (82µm) and implanted with the same 2 implants to generate virtual models. These were loaded with constant glenohumeral force, varying glenohumeral conformity and superior or inferior load shifts while internal stresses at the cement-bone and implant-cement interfaces were calculated and related to apparent bone density in the periprosthetic zone.

Results

Mean displacements at the inferior and superior edges showed no statistical difference between keeled and pegged designs (p>0.05). Compression and distraction were however statistically different from the initial reference measurement at even 1000 and 4000 cycles for both implant designs (p<0.05). For both implant designs, superior and inferior distractions were generally highest at each measurement time in specimens where BMD below the lifting edge was lower, showing a trend of increased distraction with decreased BMD. Moreover, the microFE models predicted higher bone and cement stresses for specimens of lower apparent bone density. Finally, highest peak stresses were located at the cement-bone interface, which seemed the weaker part of the fixation.

Discussion

With this combined experimental and numerical study, it was shown that implant distraction and stresses in the cement layer are greater in glenoids of lower bone density for both implant designs. This indicates that fixation failure will most likely occur in bone of lower density, and that fixation design itself may play a secondary role. These results have important impact for understanding the mechanisms of glenoid component failure, a common complication of total shoulder arthroplasty.


Email: