header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SOX9, RUNX2/3 AND MEF2C REGULATION AND ITS RELEVANCE IN HYPERTROPHY DURING CHONDROGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STROMAL CELLS

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 1 of 2.



Abstract

Introduction

Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far regulation of these key fate determining TFs has not been studied thoroughly on mRNA and protein level through chondrogenesis of human MSC. To fill this gap in knowledge, we aim to uncover regulation of SOX9, RUNX2/3, MEF2C and other TFs related to hypertrophy during MSC chondrogenesis in vitro and in comparison to the gold standard AC redifferentiation.

Methods

Expression of SOX9, RUNX2/3 and MEF2C was compared before and during 6-week chondrogenic re-/differentiation of human MSC and AC on mRNA level via qRT-PCR and protein level via Western-Blotting. Chondrogenesis was evaluated by histology at d42 and expression of chondrogenic markers like COL2. Hypertrophic development was characterized by ALP activity and expression of hypertrophic markers like COL10.

Results

Hypertrophic development, characterized by upregulation of COL10, high COL10/COL2 ratios and ALP activity, was confirmed in MSC and absent in AC. MSC started into differentiation with less SOX9 before induction, while higher RUNX2/3 was observed compared to AC. During MSC chondrogenesis SOX9 and MEF2C steadily increased on mRNA and protein level. Surprisingly, although RUNX2 mRNA level increased in MSC over 42 days, RUNX2 protein remained undetectable. During AC redifferentiation, SOX9 levels remained high on mRNA and protein level while RUNX2/3 and MEF2C remained low.

Conclusion

After expansion and before applying chondrogenic stimuli, a chondrogenic priming with more SOX9 and lower RUNX2/3 was found in AC. In contrast osteochondral priming with higher RUNX2/3 and lower SOX9 levels was observed in MSC which could set the stage for endochondral development, leading to hypertrophy. Dynamic regulation of RUNX2/3 and MEF2C at lower SOX9 background levels separated MSC from AC differentiation over 42 days. Adjusting transcription factor levels in MSC could be essential for creating a protocol leading to diminished hypertrophy of MSC during chondrogenesis.


Email: