header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

COMPARISON OF SUBCHONDRAL BONE ALTERATIONS DURING EXPERIMENTAL OSTEOARTHRITIS IN WILD TYPE, ALENDRONATE-TREATED, Α-CALCITONIN GENE-RELATED PEPTIDE AND TACHYKININ1 KNOCKOUT MICE

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 1 of 2.



Abstract

Little is known on how sensory nerves and osteoclasts affect degenerative processes in subchondral bone in osteoarthritis (OA). Substance P (SP) effects on bone are ambivalent but physiological levels are critical for proper bone quality whereas α-calcitonin gene-related peptide (αCGRP) has anabolic effects. Here, we aimed to analyse the influence of an altered sensory neuropeptide microenvironment on subchondral bone in murine OA. Transection of the medial meniscotibial ligament (DMM) of the right hind leg induced joint instability leading to development of OA. Subchondral bone of tibiae from wildtype (WT), alendronate-treated WT (ALN, osteoclast inhibition), αCGRP- and SP- (Tachykinin (Tac)1) knockout mice was analysed by micro-computed tomography 4 and 12 weeks after DMM or sham surgery. Bone resorption marker CTX-I was measured in serum.

We observed osteophytosis in all DMM groups and ALN sham mice 4 weeks after surgery but also in sham groups 12 weeks after surgery. In subchondral bone, bone volume density (BV/TV) increased from 4 to 12 weeks after surgery in DMM WT and Tac1-/− mice. DMM WT mice additionally had increased trabecular numbers (Tb.N.) and decreased trabecular space (Tb.Sp.) over time. Sham mice also showed time-dependent alterations in subchondral bone. In sham WT and αCGRP-/− mice specific bone surface (BS/BV) decreased and trabecular thickness (Tb.Th.) increased from 4 to 12 weeks after surgery while subchondral BV/TV of αCGRP-/− mice increased. Comparison of subchondral bone parameters at each time point showed elevated BV/TV in ALN DMM compared to WT DMM mice 4 weeks after surgery. In addition, both ALN sham and DMM mice showed a reduced BS/BV compared to WT. 4 weeks after sham surgery Tb.Th. was highest in ALN mice. In DMM WT mice Tb.Sp. was higher compared to ALN and αCGRP-/−. 12 weeks after surgery (late OA stage), BS/BV of ALN sham mice was significantly reduced in relation to ALN DMM, WT and Tac1-/− sham, while Tb.Th. increased compared to WT. DMM significantly decreased Tb.N. and increased Tb.Sp. in Tac1-/− compared to sham 12 weeks after surgery. CTX-I concentrations were significantly higher in ALN compared to Tac1-/− mice 4 weeks after sham surgery. 12 weeks after sham surgery CTX-I concentrations of WT mice were increased compared to αCGRP-/− and Tac1-/− mice.

Over time, DMM induced stronger changes in subchondral bone of WT mice compared to knockout strains. WT and αCGRP-/− sham mice also show alterations in bone parameters over time indicating age-related effects on bone structure. SP deficiency enhanced DMM-induced structural bone alterations in late stage OA emphasizing the importance of SP under pathophysiological conditions. Osteoclast inhibition with alendronate proved to be preservative for time-dependent changes of subchondral bone observed in both, DMM and sham mice. Interestingly, ALN treatment did not reduce bone turnover marker CTX-I, and additionally promoted early osteophyte formation in sham mice.


Email: