header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

COMPONENT SAFETY VERIFICATION FOR THE TIBIAL COMPONENT OF AN ALL-CERAMIC TOTAL KNEE ARTHROPLASTY

The European Orthopaedic Research Society (EORS) 25th Annual and Anniversary Meeting, Munich, Germany, September 2017. Part 1 of 2.



Abstract

Introduction

Today TKR is considered one of the most successful operative procedures in orthopedic surgery. Nevertheless, failure rates of 2 – 10% depending on the length of the study and the design are still reported. This provides evidence for further development in knee arthroplasty. Particularly the oxide ceramics used now in THA show major advantages due to their excellent tribological properties, their significantly reduced third-body wear as well as their high corrosion resistance. A further advantage of ceramic materials is their potential use in patients with metal allergy. Metallic wear induces immunological reactions resulting in hypersensitivity, pain, osteolysis and implant loosening. The purpose of our study was to examine the safety of the tibial component of a novel all-ceramic TKR.

Materials and Methods

We tested the tibial components of the primary knee implant BPK-S Integration Ceramic. Both the tibial and the femoral component consist of BIOLOX®delta ceramic The standards ISO 14879-1 and ASTM F1800-07 describe the test set-up for the experimental fatigue strength testing of tibial components from knee implants. We conducted the testing with a significantly increased maximum load of 5,300 N (900 N are required). A final burst strength test was carried out after the fatigue load testing in the same embedding and with the same test set-up.

Results

No specimen failed during fatigue load testing. The subsequent post-fatigue burst strength testing showed a maximum strength against fracture of at least 9.7 kN for size 3 and at least 12.1 kN for size 6.

Discussion

The good results of the strength testing of the tibial component of the BPK-S Integration Ceramic tibial plateau supported the good initial clinical outcome without any implant specific complications of this knee design. Further clinical studies have to show if this design fulfills the high expectations over long periods of time.


Email: