header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

HISTOLOGICAL ASSESSMENT OF BONE REMODELLING WITHIN A BIOABSORBABLE BONE SUBSTITUTE IN CHRONIC OSTEOMYLEITIS

The European Bone and Joint Infection Society (EBJIS) 2018 Meeting, Helsinki, Finland, September 2018.



Abstract

Aim

This study describes the histologic changes seen with a gentamicin-eluting synthetic bone graft substitute (BGS)(1) in managing bone defects after resection of chronic osteomyelitis (cOM).

Method

154 patients with mean follow-up of 21.8 months (12–56) underwent treatment of cOM with an antibiotic-loaded BGS for defect filling.

Nine patients had subsequent surgery, not related to infection recurrence, allowing biopsy of the implanted material. These biopsies were harvested between 19 days and two years after implantation, allowing a description of the material's remodelling over time. Samples were fixed in formalin and stained with haematoxylin-eosin. Immunohistochemistry, using an indirect immunoperoxidase technique, identified the osteocyte markers Dentine Matrix Protein-1 (DMP-1) and Podoplanin, the macrophage/osteoclast marker CD68, and the macrophage marker CD14.

Results

The material was actively remodelled and was osteoconductive. There was evidence of osteoblast recruitment, leading to osteoid and intramembranous formation of woven and lamellar bone on the material's surface, seen most prominently in areas of well-vascularised fibrous tissue. Osteocytes in woven bone expressed the markers DMP-1 and Podoplanin. No cartilage or endochondral ossification was seen.

There was a prominent (CD14+/ CD68+) macrophage response to the BSG and macrophages within reparative cellular and collagenous fibrous tissue.

In biopsies taken between 4 and 5 months, there were bone trabeculae containing BGS of mainly woven but partly lamellar type. Giant cells on the surface of newly formed mineralised osteoid and woven bone expressed an osteoclast phenotype (CD68+/CD14-).

In later biopsies (up to 2 years), larger bone trabeculae were seen more frequently within well-vascularised reparative fibrous tissue. The BGS was replaced with predominantly lamellar bone.

One biopsy was taken from an extraosseous leak of BGS into the soft tissues, behind the distal tibia. The histology showed a heavy macrophage infiltrate, but notably no evidence of osteoid or bone formation in the material or surrounding soft tissues

Conclusion

There was clear evidence that this BGS is osteoconductive with first osteoid then woven and lamellar bone being formed. DMP-1 and podoplanin-expressing osteocytes present in woven and lamellar bone demonstrate osteoclastic bone remodelling. Increased lamellar bone was noted in later samples and bone formation was most prominent in well-vascularised areas. There was on-going remodelling of the material beyond one year. The BGS did not ossify in soft tissue. The hydroxyapatite scaffold in this material is probably responsible for its high osteoconductivity and potential to be transformed into bone.


Email: