header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Knee

BLOCKADE OF THE VEGF PATHWAY IMPAIRS OSSEOINTEGRATION AND CD31hiEMCNhi ENDOTHELIUM IN A MOUSE TIBIAL IMPLANT MODEL

The Knee Society (TKS) 2018 Members Meeting, Saint Louis, MO, USA, September 2018.



Abstract

Introduction

Poor osseointegration of cementless implants is the leading clinical cause of implant loosening, subsidence, and replacement failure, which require costly and technically challenging revision surgery. The mechanism of osseointegration requires further elucidation. We have recently developed a novel titanium implant for the mouse tibia that maintains in vivo knee joint function and allows us to study osseointegration in an intra-articular, load-bearing environment.

Vascular endothelial growth factor (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. It also plays critical roles in skeletal development and bone repair and regeneration. A specialized subset of vascular endothelium, CD31hiEMCNhi cells displaying high cell surface expression of CD31 and Endomucin, has been reported to promote osteoblast maturation and may be responsible for bone formation during development and fracture healing.

Because of their potential role in osseointegration, the aim of this study was to use our mouse implant model to investigate the role of VEGF and CD31hiEMCNhi endothelium in osseointegration.

Methods

Under an IACUC-approved protocol, the implant was inserted into the right tibia of 16-week-old female C57BL/6 mice (N = 38). The mice were then randomized into 2 groups: Control group (N=19) and Anti-VEGFR group (N=19). A cocktail of VEGFR-1 antibody (25mg/kg) and VEGFR-2 antibody (25mg/kg) was given to the mice in the Anti-VEGFR group by intraperitoneal injection every third day starting immediately after surgery until euthanasia. An equivalent amount of an isotype control antibody was given to the control group. Flow cytometric (N = 4/group) and immunofluorescencent (N = 3/group) analyses were performed at 2 weeks post-implantation to detect the distribution and density of CD31hiEMCNhi endothelium in the peri-implant bone. Pull-out testing was used at 4 weeks post-implantation to determine the strength of the bone-implant interface.

Results

Flow cytometry revealed that Anti-VEGFR treatment decreased CD31hiEMCNhi vascular endothelium percentage in the peri-implant bone vs. control (p = 0.039) at 2 weeks post-implantation (Fig. 1). This was confirmed by the decrease of CD31 and EMCN double positive cells detected with immunofluorescence at the same time point (Fig. 2). More importantly, anti-VEGFR treatment decreased the maximum load of pullout testing compared with control (p = 0.042) (Fig. 3).

Conclusion

VEGF is a key mediator of osseointegration and the development of CD31hiEMCNhi endothelium. This may provide a new drug target for the enhancement of osseointegration. We have also developed a system to run flow cytometric analysis and perform fluorescent staining on the limited tissue around the implant in this mouse model. This will be a powerful platform for future mechanistic studies on osseointegration.

For any figures or tables, please contact authors directly.