header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PATELLA MALTRACKING: SPINNING OUT OF CONTROL

Current Concepts in Joint Replacement (CCJR) Winter 2017 Meeting, Orlando, FL, USA, December 2017.



Abstract

“The shortest distance between two points is a straight line.” This explains many cases of patellar maltracking, when the patellar track is visualised in three dimensions. The three-dimensional view means that rotation of the tibia and femur during flexion and extension, as well as rotational positioning of the tibial and femoral components are extremely important. As the extensor is loaded, the patella tends to “center” itself between the patellar tendon and the quadriceps muscle. The patella is most likely to track in the trochlear groove IF THE GROOVE is situated where the patella is driven by the extensor mechanism: along the shortest track from origin to insertion. Attempts to constrain the patella in the trochlear groove, if it lies outside that track, are usually unsuccessful. Physiologic mechanisms for tibial-femoral rotation that benefit patellar tracking (“screw home” and “asymmetric femoral roll-back”) are not generally reproduced.

Practical Point

A patellofemoral radiograph that shows the tibial tubercle, illustrates how the tubercle, and with it the patellar tendon and patella itself, are all in line with the femoral trochlea. To accomplish this with a TKA, the femoral component is best rotated to the transepicondylar axis (TEA) and the tibial component to the tubercle. In this way, when the femoral component sits in its designated location on the tibial polyethylene, the trochlear groove will be ideally situated to “receive” the patella.

Knee Mechanics

Six “degrees of freedom” refers to translation and rotation on three axes (x,y,z). This also describes how arthroplasty components can be positioned at surgery. The significant positions of tibial, femoral and patellar components are: 1. Internal-external rotation (around y-axis) and 2. Varus-valgus rotation (around z axis). 3. Medial-lateral translation (on x-axis). The other positional variables are less important for patella tracking. Biomechanical analyses of knee function are often broken down into: i. Extensor power analysis (y-z or sagittal plane) and ii. Tracking (x-y or frontal plane). These must be integrated to include the effects of rotation and to better understand patellar tracking.

Effect of Valgus

Frontal plane alignment is important but less likely to reach pathological significance for patellar tracking than rotational malposition clinically. For example if a typical tibia is cut in 5 degrees of unintended mechanical valgus, this will displace the foot about 5 cm laterally but the tibial tubercle only 8 mm laterally. An excessively valgus tibial cut will not displace the tubercle and the patella as far as mal-rotation of the tibial component.

Effect of Internal Rotation of Tibial Component

By contrast, internal rotation of the tibial component by 22 degrees, which is only 4 degrees in excess of what has been described as tolerable by Berger and Rubash, displaces the tubercle 14 mm, a distance that would place the center of most patella over the center of the lateral femoral condyle, risking dislocation. Dynamically, as the knee flexes, if the tibia is able to rotate externally this forces the tubercle into an even more lateral position, guaranteeing that the patella will align lateral to the tip of the lateral femoral condyle, and dislocate.

The design of femoral components, in particular the varus-valgus angle of the trochlear groove, has an effect on patellar tracking. This effect will be accentuated by the surgical alignment technique of the femoral and tibial components. Component positions that mimic the orientation of the normal anatomy usually include more valgus alignment of the femoral component. This rotates the proximal “entrance” of the femoral trochlear groove more medially, making it more difficult for the patella to descend in the trochlear groove.