header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ADDRESSING VARUS DEFORMITY: A LIGAMENT PIE-CRUSTING TECHNIQUE

Current Concepts in Joint Replacement (CCJR) Winter 2017 Meeting, Orlando, FL, USA, December 2017.



Abstract

Adequate soft tissue balance at the time of total knee arthroplasty (TKA) prevents early failure. In cases of varus deformity, once the medial osteophytes have been resected, a progressive release of the medial soft tissue sleeve (MSS) from the proximal medial tibia is needed to achieve balance.

The “classic” medial soft tissue release technique, popularised by John Insall et al., consists of a sharp subperiosteal dissection from the proximal medial tibia that includes superficial and deep medial collateral ligament (MCL), semimembranosus tendon, posteromedial capsule, along with the pes anserinus tendons, if needed. However, this technique allows for little control over releases that selectively affect the flexion and extension gaps. When severe deformity is present, an extensive MSS release can cause iatrogenic medial instability and the need to use a constrained implant.

It has been suggested that the MSS can be elongated by performing selective releases. This algorithmic approach includes the resection of the posterior osteophytes as the initial balancing gesture. If additional MSS release is necessary in extension, a subperiosteal release of the posterior aspect of the MSS is performed with electrocautery, detaching the posterior aspect of the deep MCL, posteromedial capsule and semimembranosus tendon for the proximal and medial tibia. Dissection is rarely extended more than 1.5 cm distal to the joint line. If additional release is necessary in extension, the medial compartment is tensioned with a laminar spreader and multiple needle punctures (generally less than 8) are performed in the taut portion of the MSS using an 18G or 16G needle. If additional release is necessary to balance the flexion gap, multiple needle punctures in the anterior aspect of the MSS are performed.

This stepwise approach to releasing the MSS in a patient with a varus deformity allows the surgeon to target areas that selectively affect the flexion and extension gaps. Its use has resulted in diminished use of constrained TKA constructs and subsequent cost savings. We have not seen an increase in post-operative instability developing within the first post-operative year.

We recommend caution when implementing this technique. Unlike the traditional release method, pie-crusting is likely technique-dependent and failure can occur within the MCL itself. Due to the critical importance of the MCL in knee stability, further research and continuous follow up of patients undergoing TKA with this technique are warranted. Intra-operative sensing technology may be useful to quantitate the effect of pie-crusting on the compartmental loads and overall knee balance.