header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CONTEMPORARY POLYMERS: ELIMINATE CLINICALLY SIGNIFICANT OSTEOLYSIS

Current Concepts in Joint Replacement (CCJR) Winter 2017 Meeting, Orlando, FL, USA, December 2017.



Abstract

Contemporary crosslinked polymers didn't just happen. The material was, has, and continues to be studied more than any other bearing surface material used in the total hip and total knee replacement construct. Historical failures and successes provided the information needed to make it the success that it is today as we approach the end of the second decade of extensive use.

Recognition that wear particles, not cement, was the major cause of osteolysis was important. Next, understanding that oxidation from free radical formation was deleterious to wear resistant polyethylene was understood and finally, that crosslinking was responsible for magnitude increases in wear resistance.

Although manufacturers have developed multiple processes to develop their crosslinked polymers (gamma and e beam radiation, melting and annealing, and most recently the addition of antioxidants) there are excellent 10-year results demonstrating head penetration rates (indicative of wear and creep) in the 0.02 to 0.04 mm/year range for many materials with minimal if any detection of osteolysis on radiographs and close to 0% revised for wear at 10+ years.

Are there any cautions? Recently, at 10- to 15-year follow up, some clinically insignificant osteolysis has been noted in one study and in that same study, 36 mm heads had twice the volumetric wear as 32 mm heads, but it was still a relatively low volume compared to the previous generation polyethylenes. We need further follow up, but at two decades of use, crosslinked polymers have dramatically reduced the osteolysis problem.