header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ASSURING THE “LONG-TERM” TJA: A TRIAD OF VARIABLES

Current Concepts in Joint Replacement (CCJR) Winter 2017 Meeting, Orlando, FL, USA, December 2017.



Abstract

We live in an era where younger, fitter, more active patients are presenting with the symptoms and signs of degenerative joint disease and require total knee and total hip arthroplasty at a young age. At the same time, this population of patients is living longer and longer and is likely to create new and more complex failure modes for their implants. The ideal solution is a biological one, whereby we can either prevent joint degradation or catch it in its early stages and avoid further deterioration. There may also be advances along the way in terms of partial arthroplasty and focal resurfacing that will help us prevent the need for total joint arthroplasty.

There are several tensions that need to be considered. Should we resurface / replace early, particularly now that we have access to navigation and robotics and can effectively customise the implants to the patient's anatomy and their gait pattern? This would allow good function at a young age. Or should we wait as long as possible and risk losing some function for the sake of preserving the first arthroplasty for the lifetime of the patient?

There are some key issues that we still do not fully understand. The lack of true follow-up data beyond 20 or 30 years is worrying. The data available tends to be from expert centers, and always has a dramatic loss to follow-up rate. We worry about bearing surfaces and how those materials will behave over time but we really do not know the effect of chronic metal exposure over several decades, nor do we really understand what happens to bone as it becomes more and more osteopenic and fragile around implants. We have largely recorded but ignored stress shielding, whereas this may become a very significant issue as our patients get older, more fragile, more sarcopaenic and more neurologically challenged. All the fixation debates that we have grappled with, may yet come back to the fore. Can ingrowth lead to failure problems later on? Will more flexible surfaces and materials be required to fit in with the elasticity of bone?

We have failed dramatically at translating the in vitro to the in vivo model. It seems that the in vitro model tells us when failure is going to occur but success in vitro does not predict success in vivo. We, therefore, cannot assume that long-term wear data from simulators will necessarily translate to the extreme situations in vivo where the loading is not always idealised, and can create adverse conditions.

We must, therefore, consider further how to improve and enhance our interventions. There is no doubt that the avoidance of arthroplasty needs to be at the heart of our thinking but, ultimately, if arthroplasty is to be performed, it needs to be performed expertly and in such a way as to minimise later failure. It also, clearly, needs to be cost-effective. The next stage will no doubt involve close cooperation between surgeons, engineers and industry partners to identify individualised surgical targets, select an appropriate prosthesis to minimise soft-tissue strain and develop a reproducible method of achieving accurate implantation. An ideal outcome can only be achieved by an appropriately trained surgeon selecting the optimal prosthesis to implant in the correct position in the well-selected patient.

In the longer term, our choice of implants and the way that they are inserted and fixed must take into account the evolving physiology of our patients, the nature of our devices and how to limit harm from them, and the long-term impact of the materials used which we sometimes still do not understand.