header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ANALYSIS OF MANUAL AND COMPUTER-ASSISTED PRE-OPERATIVE PEDICLE SCREW PLACEMENT PLANNING

International Society of Computer-Assisted Orthopaedic Surgery (CAOS), 17th Annual Scientific Meeting, Aachen, June 2017



Abstract

We present an analysis of manual and computer-assisted preoperative pedicle screw placement planning. Preoperative planning of 256 pedicle screws was performed manually twice by two experienced spine surgeons (M1 and M2) and automatically once by a computer-assisted method (C) on three-dimensional computed tomography images of 17 patients with thoracic spinal deformities. Statistical analysis was performed to obtain the intraobserver and interobserver variability for the pedicle screw size (i.e. diameter and length) and insertion trajectory (i.e. pedicle crossing point, sagittal and axial inclination, and normalized screw fastening strength). In our previous study, we showed that the differences among both manual plannings (M1 and M2) and computer-assisted planning (C) are comparable to the differences between manual plannings, except for the pedicle screw inclination in the sagittal plane. In this study, however, we obtained also the intraobserver variability for both manual plannings (M1 and M2), which revealed that larger differences occurred again for the sagittal screw inclination, especially in the case of manual planning M2 with average differences of up to 18.3°. On the other hand, the interobserver variability analysis revealed that the intraobserver variability for each pedicle screw parameter was, in terms of magnitude, comparable to the interobserver variability among both manual and computer-assisted plannings. The results indicate that computer-assisted pedicle screw placement planning is not only more reproducible and faster than, but also as reliable as manual planning.