header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ANKLE CARTILAGE IS MORE RESILIENT TO CYTOKINE-INDUCED CATABOLISM THAN KNEE CARTILAGE: A POTENTIAL TARGET FOR PREVENTION OF KNEE ARTHRITIS?

The Welsh Orthopaedic Society (WOS) Annual National Meeting, Oswestry, May 2017.



Abstract

The lifetime prevalence of symptomatic osteoarthritis at the knee is 50% osteoarthritis of the ankle occurs in only 1% of the population. This variation in prevalence has been hypothesised to result from the differential responsiveness of the joint cartilages to catabolic stimuli.

Human cartilage explants were taken from the talar domes (n=12) and the femoral condyles (n=7) following surgical amputation. Explants were cultured in the presence of either a combination of high concentration cytokines (TNFα, OSM, IL-1α) to resemble a post traumatic environment or low concentration cytokines to resemble a chronic osteoarthritic joint. Cartilage breakdown was measured by the percentage loss of Sulphated glycosaminoglycan (sGAG) from the explant to the media during culture. Expression levels of the pro-inflammatory molecules nitric oxide and prostaglandin E2 were also measured.

Significantly more sGAG was lost from knee cartilage exposed to TNFα (22.2% vs 13.2%, P=0.01) and TNFα in combination with IL-1α (27.5% vs 16.0%, P=0.02) compared to the ankle; low cytokine concentrations did not affect sGAG release. Significantly more PGE2 was produced by knee cartilage compared to ankle cartilage however no significant difference in nitrite production was noted.

Cartilage from the knee and ankle has a divergent response to stimulation by pro-inflammatory cytokines, with high concentrations of TNFα alone, or in combination with IL-1α amplifying cartilage degeneration. This differential response may account for the high prevalence of knee arthritis compared to ankle OA and provide a future pharmacological target to treat post traumatic arthritis of the knee.