header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

57 – DIFFERENTIATION OF MESENCHYMAL STEM CELLS FROM OSTEOARTHRITIC PATIENTS ON NITROGEN-RICH CELL CULTURE COATINGS



Abstract

Purpose: Several studies have been directed toward using mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients for cartilage or disc repair because these patients are the ones that will require a source of autologous stem cells if biological repair of tissue lesions is to be a therapeutic option. A major drawback of current cartilage and intervertebral disc tissue engineering repair is that these cells rapidly express type X collagen, a marker of late stage chondrocyte hyperthrophy implicated in endochondral ossification. However, a novel plasma-polymerized thin film material, named nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The specific aim of this study was to determine if the suppression of type X collagen by PPE:N is maintained when MSCs are transferred to pellet cultures in chondrogenic defined media.

Method: MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA using a protocol approved by the Research Ethics Committee of our institution. Cells were then expanded for 2–3 passages in DMEM high glucose supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin, and finally cultured on polystyrene (PS) cell culture dishes or PPE: N surfaces for 3 and 7 days. Cells were transferred for 3 additional days in a chondrogenic serum free media (DMEM high glucose supplemented with 2 mM L-glutamine, 20 mM HEPES, 45 mM NaHCO3, 100 U/ml penicillin, 100 μg/ml streptomycin, 1 mg/ml bovine serum albumin, 5 μg/ml insulin, 50 μg/ml ascorbic acid, 5 ng/ ml sodium selenite, 5 μg/ml transferrin) in pellet culture or on PS cell culture dishes. Cells were then lysed and proteins were separated on 4–20% acrylamide gels and transferred to nitrocellulose membranes. Type X collagen was detected by Western blot; GAPDH expression was used as an internal control for protein loading.

Results: Results showed that type X collagen protein was expressed in MSCs from OA patients cultured on polystyrene but was suppressed when cultured on PPE: N. Since defined chondrogenic medium are commonly used in pellet culture to promote in vitro chondrogenesis, we then investigated the effect of transferring cells pre-cultured on PPE:N into pellet culture on type X collagen expression. However, the decreased type X collagen expression was not maintained in these conditions and that the expression returned to control values. The decreased type X collagen expression was maintained when the cells were cultured on PS cell culture dishes.

Conclusion: The use of MSCs is promising for tissue engineering of cartilage and intervertebral disc. The present study confirmed the potential of PPE:N surfaces in suppressing type X collagen expression in MSCs from OA patients. However, when MSCs stem cells are transferred to pellet cultures, type X collagen is rapidly re-expressed suggesting that pellet cultures may not be suitable for chondrogenesis of MSCs from OA patients.

Correspondence should be addressed to: COA, 4150 Ste. Catherine St. West Suite 360, Westmount, QC H3Z 2Y5, Canada. Email: meetings@canorth.org