header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A734. IN-VIVO LIKE TESTING OF CERAMIC BALL HEADS



Abstract

Ceramic hip components are known for their superior material properties concerning the invivo loading situation. In comparison to other commonly used materials, ceramics have a very low friction coefficient and a high fracture load. However, there are a few reported occasions of in-vivo fracture of ceramic ball heads.

An experimental set-up imitating the in-vivo loading situation is used to analyze different scenarios that may lead to the fracture of the ball heads, such as dynamic loading, edge loading and the metal taper condition. It will be shown that even the worst-case set-up does not lead to fracture loads if the interface between ceramic ball head and metal taper is clean and dry. In contrast, certain disturbances/impurities of this interface can cause a further reduction of the fracture load.

Ceramic ball heads made of pure alumina have been loaded until fracture under various conditions. The angle between the loading direction and the metal taper equals 35°, the ceramic ball is mounted in an alumina insert. Parameters under investigation were the inclination of the insert, the loading rate, and the condition of taper and ball head (contamination of the interface between taper and ball with adipose and osseous tissue; stripe wear on the outside of the ball head). Altogether 58 specimens (all alumina heads mounted on a titanium taper) have been tested, To resemble the position of the human acetabulum during walking and standing up, the inclination of the insert was chosen to differ between 45° (walking) and 80° (standing up). A variation of the loading speed is also tested, with a maximal speed in the range of the in-vivo loading rate (chosen parameters: 0,5 kN/sec and 25 kN/sec). For fabric samples, bovine femur (corticalis) and porcine adipose tissue were used.

All fractured ball heads were statistically analyzed regarding the appearance of fracture in general, the fracture origin, and the metal transfer in the cone of the ceramic ball head.

The behavior of the ball heads for the different scenarios shows a great variation: If the inclination of the insert equals 45°, it is not pos sible to break the ceramic ball head at all because of the high plastic deformation of the metal taper. In case of edge loading, the fracture load drops to 20 kN for 28-12/14 S ball heads and 36 kN for 28-12/14 L ball heads. The loading rate and the contamination of the interface between ball head and taper with adipose tissue have no measurable influence on this value.

The largest effect on the fracture load has a contamination with osseous tissue. The fracture load decreases to 32% compared to the value measured without the contamination.

A minimal fracture load of approximately 8 kN (KK 28-12/14 L) was measured.

Statistical analysis shows that the fracture load depends linearly on the stiffness of the system (ball heads 28-12/14 S). Because none of the other parts changes during the experiments, the cause of the change in stiffness is most likely due to a change of the friction coefficient between ball head and taper: A reduced stiffness indicates a lower friction coefficient which results in higher normal forces in the ball head and, therefore, leads to lower fracture loads. This theory is supported by numerical calculations.

The influence of edge loading and contamination of the interface between taper and ball with osseous tissue on the fracture load can be shown. If the insert has a high inclination angle, high bending forces are applied to the ball head amplifying the effect of edge loading.

It should be accentuated, that the minimum fracture load of a ball head without contamination of the interface is still twice as high as the maximum forces measured in-vivo.

Contamination with osseous tissue leads to a minimum fracture load of approximately eight times of the body weight, a value being close to the maximum forces ever measured invivo.

Therefore, diligence is recommended during the implantation of the ceramic hip components in order to avoid disturbances of this interface. Because the reduction of the stiffness results in a reduction of the fracture load, the lubrication of the taper should be avoided.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net