header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A1138. TAPER LOCKING STRENGTH BY FOAM METAL COMPONENT



Abstract

Taper locking connection has been widely used in orthopedic implant devices. The long term successful clinical results indicated it is a safe and effective structural component. The common materials used are solid titanium and cobalt chromium alloys. Recently, foam metal materials showed promising results of bony in-growth characteristics and became the excellent choices for the orthopedic implants. Clinically it is desirable to taper lock the foam metal component to other structural components. To date there is no data for the foam metal being used directly in taper connection. The purpose of this study was to investigate the static locking strength of the taper junctions made of titanium foam metal comparing to that of conventional solid titanium material.

(5) 43mm long and 4mm thick sleeve were machined internally with 17mm major diameter and 3° included taper angle for each 70% porosity CP titanium foam metal and solid Ti6AL4VELI alloy materials. (10) Solid Ti6AL4VELI alloy stems were machined with OD geometry matching the ID of the sleeves. All components were inspected, cleaned and assembled to (5) pairs of each sleeve material combinations with 2224N axial compression force. Each assembled specimen was mounted on MTS Bionix test machine for torque resistance test. The angular displacement at 0.1 degree/sec was applied to the stem when sleeve was rotationally locked. The maximum torque resistance was recorded. The specimen was then re-assembled with 2224N axial compression force. Axial push out test was performed by loading at smaller end of the stem when the opposite end of sleeve was supported. The maximum push out force was recorded. Procedures were repeated for all foam metal and solid metal specimens. The taper interface surfaces were visually inspected to compare two types of sleeve materials.

The average torque resistance for foam metal and solid tapers were 20.4Nm (SD=3.68) and 21.7Nm (SD=3.72) respectively (p=0.59). The average axial locking forces were 2035.7N (SD=201.11) for foam metal taper and 1989.3N (SD= 451.84) for solid taper (p=0.839). There was no visual difference observed for tested stem outer and sleeve inner surfaces of foam metal and solid metal pairs.

This study suggested that the foam metal sleeve is capable to have comparable taper locking strength as the conventional solid taper components under dry static condition. The study indicated that the contact area does not significantly influence the friction locking. This is in agreement with the friction force definition which depends only on the coefficient of friction and normal contact force.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net