header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A860. CERAMIC HIP SQUEAKING: VIBRATION ANALYSIS OF RETRIEVED HIPS TO IDENTIFY THE SOUND SOURCE



Abstract

Squeaking of ceramic-on-ceramic (CoC) hips is a clinical phenomenon that is concerning with regard to the long term performance of these joint devices. Investigations into the cause of the squeaking have focused on patient factors and demographics, surgical placement, and other non-ceramic components in the devices. The current study tests latest-generation CoC devices to measure the vibration modes and frequencies of the components individually as well as assembled in the complete surgical construct.

Audio data from clinical cases of squeaking hips were analysed to determine the frequencies present. Retrieved CoC hips (n = 7) and never-implanted CoC bearing couples (n = 3) were tested in the laboratory for squeaking under loaded articulation.

Bovine serum was introduced into the CoC articulation and dried to promote stick-slip motion at the articulation. Squeaking sounds from the in vitro tests were recorded for audio analysis. Low mass, high frequency-response ceramic shear piezoelectric accelerometers (PCB Piezotronics) were adhered to the hip components along multiple axes to measure vibrations during testing.

Clinical audio shows that squeaking occurs at fundamental frequencies in the range of 1 to 3 kHz, with harmonics above the fundamental frequency. Retrieved CoC bearing couples squeaked at fundamental frequencies from 1.5 kHz to 3.8 kHz. Fourier Transform analysis of the audio closely matched the concurrent output from the accelerometers mounted directly on the ceramic components. This held true even in the absence of metal components in the system. With metal components included in the test construct (acetabular shell, acetabular cup, femoral stem), those components also vibrated at the same frequencies as the ceramic bearing couples, indicating that the CoC articulation is the source of the vibrations, with metal components conducting and emanating the sound.

The never-implanted bearing couples were made to squeak and vibrated at fundamental frequencies ranging from 1 kHz to 8 kHz.

Squeaking from CoC hips can be reproduced in the lab using components from clinical retrievals. Instrumentation of the explanted hips confirms that the vibration frequencies of the ceramic components themselves match the audible squeaking. The squeaking of ceramic components mounted with soft polymers and with no metal contact at any point indicates that the ceramic components themselves are the source of the clinical squeaking. The measured vibration of ceramic components in the audible range is an observation not predicted by modeling studies reported in the literature to date.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net