header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A804. POSTERIOR CRUCIATE LIGAMENT RECRUITMENT AFFECTS FLEXION GAP DYNAMICS DURING GAP DISTRACTION IN TOAL KNEE REPLACEMENT



Abstract

Balancing the PCL in a PCL-retaining total knee replacement (TKR) is important, but sometimes difficult to execute in an optimal manner. Due to the orientation of the PCL it is conceivable that flexion gap distraction will lead to anterior movement of the tibia relative to the femur. This tibio-femoral repositioning influences the tibio-femoral contact point, which on its turn affects the kinematics of the TKR. So far, the amount of tibiofemoral repositioning during flexion gap distraction is unknown which leads to uncertain kinematic effects after surgery. The goal of this study was to quantitatively describe the parameters of the flexion gap (gap height, anterior tibial translation and femoral rotation) and their relationship while the knee is distracted during implantation of a PCL-retaining TKR with the use of computer navigation. Furthermore, the effect of PCL elevation angle on the flexion gap parameters was determined.

In 50 knees, during a ligament-guided TKR procedure, the flexion gap was distracted with a double-spring tensor with 100 and 200 N after the tibia had been cut. The flexion gap height, anterior tibial translation and femoral rotation were measured intra-operatively using a CT-free navigation system. PCL elevation was calculated based on the femoral and tibial insertion sites as indicated by the surgeon with the pointer of the navigation system.

To identify a relationship between flexion gap height increase and anterior tibial translation, the ratio between anterior translation and gap height increase was determined for each patient between 100 and 200 N.

The mean gap height increased 2.2 mm (SD 0.96) and mean increase in anterior tibial translation was 4.2 mm (SD 1.6). Hence, on average, for each mm increase in gap height, the tibia moved 1.9 mm (SD 0.96) in anterior direction. Knees with a steep PCL showed significantly more AP translation for each mm gap height increase (gap/AP-ratio was 1 : 2.31 (SD 0.63)) compared to knees with a flat PCL (gap/AP-ratio was 1 : 1.73 (SD 0.50)).

The increase in femur (exo)rotation was on average 0.60° (SD 1.4).

With a tensioned PCL the tibia will move anteriorly on average 1.9 mm for every extra mm that the flexion gap is increased. The flexion gap dynamics can be explained in part by the orientation of the PCL: the greater the elevation angle, the more anterior tibial displacement during distraction of the flexion gap. The surgeon must be aware that distraction of the flexion gap influences the tibiofemoral contact point. The tibio-femoral contact point will move posteriorly and stresses in the PCL will rise and produce limited flexion and pain. In case of a conforming insert AP-movement will be limited but high PE stresses may be introduced that can lead to wear. This information may be helpful in selecting the optimal soft tissue balancing procedure and the optimal PE insert thickness in PCL retaining TKR.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net