header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A802. TRACKING BACK IN VIVO WEAR KINEMATICS FROM THE SURFACE OF RETRIEVED UHMWPE TIBIAL COMPONENTS BY MEANS OF POLARIZED RAMAN SPECTROSCOPY



Abstract

Multiaxial rotation of femoral component is generated in a wide range against UHMWPE tibial insert during ambulation or deep bending activities. Simultaneously, microscopic oscillation and twisting might accompany with such a wide-range motion.

Such a combined in-vivo kinetics is expected to bring more severe wear to the sliding surface of knee joint prostheses than that in a case of single macro-kinetics (i.e., that commonly reproduced by conventional wear simulators). In order to reproduce clinical surface degradation correctly and quantitatively in simulator tests, we have to consider microscopic motions at the joint bearing surfaces. The purpose of this study is to analyze the influence of the composite knee motion on wear using a non-destructive spectroscopic approach.

The crystalline phase in UHMWPE is pre-oriented in the tibial insert from the manufacturing process, but the orientation of crystalline lamellae is sensitive to mechanical loading. Therefore, the orientation of the crystalline lamellae on the surface of retrieved UHMWPE tibial inserts could reflect the local motions in vivo generated in the joint during ambulation. The visualization of (orthorhombic) crystalline lamellae might ultimately lead to the possibility of tracking back the wear history of the joint. In this study, polarized Raman spectroscopy was employed in order to non-destructively visualize the lamellar orientation in UHMWPE tibial inserts, which were retrieved after exposures in human body elapsing several years.

According to this Raman analysis and in comparison with an unused insert, the orientation of surface lamellae was found to have been clearly changed due to wear in accordance to the local motion of the femoral component. Additionally, we could obtain information about the origin of delamination from the in-depth profile for lamellae orientation angle. This study not only shows the possibility of optimizing the UHMWPE structure to minimize wear but also gives a hint for the development of knee simulators of the next generation.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net