header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A756. ADVANCED MICROSCOPY OF ALUMINA-ON-ALUMINA HIP PROSTHESES: IN VIVO AND IN VITRO



Abstract

Retrieved alumina-on-alumina hip joints frequently exhibit a localised region of high wear, commonly called ‘stripe wear’. This ‘stripe wear’ can be replicated in vitro by the introduction of micro-separation, where the joint contact shifts laterally reproducing edge loading during the simulated walking cycle. While the origin of stripe wear is clearly associated with the micro-scale impact resulting from micro-separation, the wear processes leading to its formation and the wear mechanisms elsewhere on the joint are not so well understood. The purpose of this study was to compare the surface microstructure of in vivo and in vitro alumina hip prostheses, and investigate the origins of the damage accumulation mechanisms that lead to prosthetic failure.

The in vivo alumina hip prosthesis was Biolox (Ceram-Tec, AG, Plochingen, Gemany) implanted for 11 years [1]. The in vitro alumina hip prosthesis was Biolox-forte (CeramTec, AG, Plochingen, Gemany), which had been tested in a hip joint simulator under micro-separation at Leeds University using the procedures given in [2]. The worn surfaces of the alumina hip prostheses were investigated using a Scanning Electron Microscopy (SEM). Similar worn surfaces were seen for both in vivo and in vitro samples. Focused ion beam (FIB) microscopy was used to determine the sub-surface damage across the stripe wear. Samples were subsequently removed for Transmission Electron Microscopy (TEM). Sub-surface damage was found to be limited to a few μm beneath the surface; ~ 2μm for in vivo samples and ~1μm for in vitro samples. The transition from mild wear to more severe (stripe) wear was entirely triggered by intergranular fracture. The first stages of fracture lead to the liberation of surface grains which act as 3rd body abrasives. The TEM showed that abrasive grooves are associated with extensive surface dislocation activity, which leads to further grain boundary fracture.

This allows the cycle to be repeated and accelerated, thus yielding the stripe wear region.

The conclusions are: 1. In vitro hip simulation with micro-separation can produce similar microstructure to in vivo alumina hip prostheses; 2. To extend the life of the joint through the avoidance of severe wear, material and design solutions can be investigated using ceramic materials that have an increased surface inter-granular fracture toughness and component designs with reduced contact stress under edge loading.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net

Reference:

1 Stewart et al. J Mater. Sci: In Med, 12, 1053–1056, 2001. Google Scholar