header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A695. INFLUENCE OF THE CRUCIATE LIGAMENTS EXCISION ON THE DYANMIC GAP KINEMATICS: A CADAVERIC MODEL



Abstract

Routinely in TKA, at least one of the cruciate ligaments are sacrificed. The cruciate ligaments excision may have an impact in the stability of the reconstructed knee by virtue of the impact on the gap kinematics. In this study, a selective cutting protocol was designed to quantify the individual contribution of ACL and PCL about the knee by means of a loaded cadaveric model.

Five fresh frozen normal cadaver specimens were used. The femur was fixed to a specially designed machine, and 3D tibial movements relative to the femur and joint gap distances were measured by means of a navigation system from full extension to 140° flexion. The joint was distracted with 10 pounds. The measurement was performed before and after ACL and PCL excision.

Medial gap distance at 90° flexion before and after cruciate ligaments excision was 4.3 ± 2.7 mm (mean ± SD) and 5.1 ± 2.8 mm (p< 0.05) respectively. Cruciate ligaments excision significantly widened the medial and lateral gaps at many flexion angles, and the effect of excision on the gap distance was different between medial and lateral sides especially at 90° knee flexion. Cruciate ligaments excision also significantly influenced knee kinematics. If this varying gap is not accounted for either through implant shape and orientation or through soft tissue adjustments, instability could be the result.

Surgeons should be made aware of the influence of cruciate excision on varus/valgus laxity throughout the range of motion. Design modification of the femoral component may also be necessary in order to obtain optimal stability in deep flexion.

Correspondence should be addressed to Diane Przepiorski at ISTA, PO Box 6564, Auburn, CA 95604, USA. Phone: +1 916-454-9884; Fax: +1 916-454-9882; E-mail: ista@pacbell.net