header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

128. CONTRIBUTION OF THE OLECRANON TO ELBOW STABILITY: AN IN-VITRO BIOMECHANICAL STUDY



Abstract

Purpose: The purpose of this study was to determine the effect of serial olecranon resections on elbow stability.

Method: Eight fresh, previously frozen cadaveric arms underwent CT scanning. The specimens were mounted in an in-vitro motion simulator, and kinematic data was obtained using an electromagnetic tracking system. Simulated active and passive flexion was produced with servo-motors and pneumatic pistons attached to specific muscles. Flexion was studied in the dependent, horizontal, varus, and valgus positions. Custom computer navigation software was utilized to guide serial resection of the olecranon in 12.5% increments. A triceps advancement repair was performed following each resection.

Results: Serial olecranon resections resulted in a significant increase in valgus-varus (V-V) laxity for both passive (p< 0.001) and active (p=0.04) flexion. For passive motion this increase reached statistical significance following the 12.5% resection. This corresponded to an increase in V-V laxity of 1.4 ± 0.1o and a total laxity of 7.5 ± 1.0o. For active flexion this increase reached significance following the 62.5% resection. This corresponded to an increase in V-V laxity of 5.6 ± 1.1o and a total laxity of 11.2 ± 1.5. There was no significant effect of sequential olecranon excision on elbow kinematics or stability with the elbow in the vertical or horizontal positions. The elbows became grossly unstable after resection of greater than 75% of the olecranon.

Conclusion: A progressive increase in the varus-valgus laxity of the elbow was seen with sequential excision of the olecranon. Laxity of the elbow was increased with excision of 75% of the olecranon, likely due to the loss of the bony congruity and attachment site of the posterior band of the medial collateral ligament. Gross instability resulted when 87.5% or greater was removed, likely due to damage to the anterior band of the medial collateral ligament as it inserts on the sublime tubercle of the ulna. Rehabilitation of the elbow with the arm in the dependant position should be considered following excision of the olecranon; varus and valgus orientations should be avoided. The contribution of the olecranon to elbow stability may be even more important in patients with associated ligament injuries or fractures of the elbow.

Correspondence should be addressed to CEO Doug C. Thomson. Email: doug@canorth.org