header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

28. OSTEOCHONDRAL LESIONS OF THE CAPITELLUM DO NOT AFFECT ELBOW KINEMATICS AND STABILITY



Abstract

Purpose: Osteochondritis dissecans (OCD) of the capitellum most commonly affects adolescent pitchers and gymnasts, and presents with pain and mechanical symptoms. Fragment excision is the most commonly employed surgical treatment; however, patients with larger lesions have been reported to have poorer outcomes. It’s not clear whether this is due to increased contact pressures on the surrounding articular surface, or if fragment excision causes instability of the elbow. The purpose of this study was to determine if fragment excision of simulated OCD lesions of the capitellum alters kinematics and stability of the elbow.

Method: Nine fresh-frozen cadaveric arms were mounted in an upper extremity joint motion simulator, with cables attaching the tendons of the major muscle tendons to motors and pneumatic actuators. Electromagnetic receivers attached to the radius and ulna enabled quantification of the kinematics of both bones with respect to the humerus. Three-dimensional CT scans were used to plan lesions of 12.5% (mean 0.8cm2), 25%, 37.5%, 50%, and 100% (mean 6.2cm2) of the capitellar surface, which were marked on the capitellum using navigation. Lesions were created by burring through cartilage and subchondral bone. The arms were subjected to active and passive flexion in both the vertical and valgus-loaded positions, and passive forearm rotation in the vertical position.

Results: No significant differences in varus-valgus or rotational ulnohumeral kinematics were found between any of the simulated OCD lesions and the elbows with an intact articulation with active and passive flexion, regardless of forearm rotation and the orientation of the arm (p> 0.7). Radiocapitellar kinematics were not significantly affected during passive forearm rotation with the arm in the vertical position (p=0.07–0.6).

Conclusion: In this in-vitro biomechanical study even large simulated OCD lesions of the capitellum did not alter the kinematics or laxity of the elbow at either the radiocapitellar or ulnohumeral joints. These data suggest that excision of capitellar fragments not amenable to fixation can be considered without altering elbow kinematics or decreasing stability. Further study is required to examine other factors, such as altered contact stresses on the remaining articulation, that are thought to contribute to poorer outcomes in patients with larger lesions.

Correspondence should be addressed to CEO Doug C. Thomson. Email: doug@canorth.org