header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE FEMORAL INTRAMEDULLARY CYTOKINE MICRO-ENVIRONMENT FOLLOWING FEMORAL SHAFT FRACTURE AND INTRAMEDULLARY REAMING



Abstract

Patients with a femoral shaft fracture requiring intra-medullary nailing were recruited to investigate if the femoral canal could be a potential source of inflammatory cytokines, previously implicated in the pathogenesis of life-threatening inflammatory complications.

Femoral and peripheral blood samples were obtained at the time of surgery from patients with a femoral shaft fracture requiring intramedullary nailing. The local femoral intramedullary and peripheral release of a group of ten Th1 and Th2 cytokines concentrations (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, GM-CSF, TNF-a and IFN-g) after femoral shaft fracture and intramedullary reaming, if performed, was measured using a Human Cytokine Antibody 10-plex Bead Kit. A control group of patients(n=3) undergoing hip replacement was established to allow comparison with the normal femoral intramedullary cytokine environment.

21 patients with a femoral shaft fracture were recruited. Femoral shaft fracture caused a significant increase in the local femoral concentrations of IL-6 (median 3967pg/ml; range 128–25,689pg/ml) and IL-8 (median 238pg/ml; range 8–8,288pg/ml) compared to the femoral control group(p=0.0005 and p=0.001 respectively). No significant local femoral release of the other cytokines was demonstrated. In the patients who underwent intramedullary reaming of the femoral canal (n=6), a further significant local release of IL-6 (median post-ream 15,903pg/ml; range 1,854–44,922pg/ml) and IL-8 (median post-ream 1,443pg/ml; range 493–3,734pg/ml) was demonstrated (p=0.01 and p=0.03 respectively), thus showing that intramedullary reaming can cause a significant local inflammatory response.

Femoral shaft fracture produces a local inflammatory response releasing large amounts of the cytokines IL-6 and IL-8 into the local femoral environment but not of the other Th1 and Th2 cytokines studied. Reaming, produced significant elevation in local femoral IL-6 and IL-8 concentration, suggesting a local femoral response as a result of this procedure. Possibly, local femoral environment may act as a cell-priming or stimulating zone, for circulating inflammatory cells.

Correspondence should be addressed to Editorial Secretary Mr ML Costa or Assistant Editorial Secretary Mr B.J. Ollivere at BOA, 35–43 Lincoln’s Inn Fields, London WC2A 3PE, England; Email: mattcosta@hotmail.com or ben@ollivere.co.uk