header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

SUSTAINED RELEASE OF VEGF FROM CAP CERAMICS PROMOTES BIOMATERIAL VASCULARIZATION IN VIVO



Abstract

Sufficient vascularization is essential for osseointegration of biomaterials and their substitution by new bone. Angiogenic growth factors such as VEGF are promising agents to promote the vascularization of bone substitutes. To optimize the efficacy of VEGF delivery a continuous administration of low concentrations of VEGF seems to be beneficial. We hypothesized that a long-term release of VEGF from calcium phosphate ceramics may induce a sustained angiogenic response and sufficiently promote biomaterial vascularization in vivo.

Vascular endothelial growth factor (VEGF, Genentech Inc., South San Francisco, USA.) was co-precipitated onto biphasic calcium phosphate ceramics (BCP, 80% HA, 20% β-TCP) at a concentration of 1μg/ml and 5μg/ml. The passive release and the cell-mediated release of VEGF were analyzed over 19 days by ELISA. For in vivo investigations BCP ceramics were implanted into a cranial window preparation in Balb/c mice. Angiogenesis and vascularization were investigated over 28 days by means of intravital microscopy. Functional capillary density (FCD, mm/mm2) served as parameter of biomaterial vascularization.

Co-precipitation of VEGF onto BCP ceramics resulted in a significant improvement of protein retention as compared to conventional adsorption of the growth factor [Cumulative VEGF release: Adsorption: 320 ± 2.6 ng/ml, Co-precipitation 116 ± 14.6 ng/ml (p< 0.05)]. Murine bone marrow cells differentiated towards osteoclasts mediated a sustained release of co-precipitated VEGF. Preliminary in vivo results showed a significant increase of functional capillary density after implantation of BCP ceramics co-precipitated with VEGF as compared to negative controls [day 7: 1.7 ± 0.2 mm/mm2 vs. 0.9 ± 0.5 mm/mm2; day 14: 6.1 ± 0.3 mm/mm2 vs. 2.1 ± 0.6 mm/mm2; day 28: 8.7 ± 0.3 mm/mm2 vs. 3.9 ± 0.7 mm/mm2, p< 0.05]. At 14 and 28 days after implantation, FCD induced by BCP ceramics co-precipitated with VEGF was significantly higher as compared to FCD induced by ceramics adsorbed with the VEGF [day 14: 6.1 ± 0.3 mm/mm2 vs. 4.0 ± 1.4 mm/mm2; day 28: 8.7 ± 0.3 mm/mm2 vs. 5.9 ± 0.7 mm/mm2, p< 0.05].

The release kinetics critically influences the efficacy and the risks of local VEGF administration. By applying a co-precipitation technique the initial high liberation rate of VEGF was reduced and a sustained cell-mediated release at low concentrations was achieved. In vivo, VEGF promoted angiogenesis and vascularization of BCP ceramics. Vessel formation was more pronounced if VEGF was co-precipitated onto ceramics as compared to superficial adsorption of the growth factor, indicating that VEGF delivery at later stages of the healing process is beneficial. The present study provides evidence that, by delivering VEGF in a sustained manner at low local concentrations biomaterial vascularization can be markedly enhanced.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org