header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

MICRORADIOLOGICAL AND BIOMECHANICAL EVALUATION OF NEGATIVE PRESSURE INTRUSION CEMENTATION TECHNIQUES IN TOTAL HIP ARTHROPLASTY



Abstract

The main mode of failure of the acetabular component in total hip arthroplasty is aseptic loosening. Successive generations of cementation techniques have evolved to alleviate this problem.

This paper evaluates one such method, Negative Pressure Intrusion cementation. Two groups of machined bovine cancellous bone samples were created; experimental (n = 26) and control (n = 26). The experimental group was cemented using the negative pressure technique and control group was cemented in the absence of negative pressure. The relative cement intrusion depths were then assessed for each group using MicroCT. These samples were then further machined and tested to failure in torsion to estimate their mechanical properties.

Results show mean cement intrusion depth for the negative pressure group to be 8676μm and 6042 μm for the control group (p = 0.078). Mechanical testing also revealed a greater mean torque in the negative pressure group (1.6223Nm vs 1.2063Nm) (p = 0.095).

This work quantifies the effect of negative intra-osseous pressure on cement intrusion depth in cancellous bone and for the first time relates this to increased mechanical strength.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org