header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

KS19: FACTORS AFFECTING THE SURVIVAL RATE OF THE OXFORD UNICOMPARTMENTAL ARTHROPLASTY: A COMPUTER SIMULATION OF A JOINT REGISTRY



Abstract

Introduction: The ten-year survivorship of Oxford Unicompartmental Knee Arthroplasty (OUKA) has ranged from 98% in the hands of the developers to only 82–90% in reports from independent centers and national registries. This study was performed to investigate the effects of surgeon training and correct patient selection on the expected outcome of this procedure.

Methods: We created a computer-simulated joint registry consisting of 20 surgeons who performed OUKA on 1,000 patients. Mathematical models of the patient and surgeon populations and corresponding hazard functions were formulated using data from the Swedish and Australian joint registries. The long-term survivorship of UKA was assumed to average 94% at 10 years and was modeled as the product of hazard functions quantifying risk factors under the surgeon’s control, risk factors presented by the patient, and the inherent revision risk of the procedure. We performed four simulations looking at the effect of surgeon training by pairing surgeons and patients based on surgeon experience and patient risk factors.

Results: When experienced surgeons (> 40 cases) performed OUKA on low risk patients (bottom quintile), the revision rate dropped from 6.0% to 4.5%. The same surgeons had a revision rate of 7.5% when assigned to the highest risk patient group (top quintile). Conversely, when the least experienced surgeons (< 10 cases) selected the least fit patients, the revision rate increased from 6% to 8.25%. However, when these surgeons were assigned to the lowest risk group, only 5.25% of patients were revised. Taken simultaneously, these results indicate that the overall revision rate of this procedure can vary between 4.5% to 8.25%, depending upon the experience of the surgeon and the patients selected.

Conclusions:

  1. Mathematical models of patients and surgeons can be built using joint registry data. These models can then be used in a computer simulation yielding results comparable to what has been reported in the literature.

  2. The outcome of Oxford UKA is primarily determined by the skill of the surgeon in selecting suitable patients rather than operative experience.

  3. Attempts to expand indications for new procedures should be moderated by concerns that the favorable results from pioneering centers may be due to the judgment and experience of the developers as much as their technical skill in performing the procedure.

The abstracts were prepared by David AF Morgan. Correspondence should be addressed to him at davidafmorgan@aoa.org.au