header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

NAVIGATION PREDICTION FOR BALANCING OF SOFT TISSUE & FLEXION-EXTENSION GAP IN PRIMARY TOTAL KNEE ARTHROPLASTY AND IT’S MID TERM CLINICAL RESULTS



Abstract

The study is to evaluate mid-term follow-up clinical results and navigation prediction of the first 106 TKAs, which was performed based on the soft tissue balancing technique using the OrthoPilot navigation system (B.Braun Aesculap, Tuttlingen, Germany).

All the 106 cases were diagnosed as osteoarthritis with varus deformity. After anatomical and kinematic registration, the mechanical axis was restored to neutral (±2°) at full extension with step by step meticulous medial soft tissue release and osteophyte removal. Proximal tibial bone cutting was performed under real-time navigation system control. Flexion and extension gaps were measured at full extension and at 90° of flexion using a tensioning device (V-STAT tensor, Zimmer) and a special torque wrench set at 50lb/inch before femoral bone cutting. The flexion and extension gap was evaluated and it’s difference was classified into 3 kinds; balanced, tight flexion gap and tight extension gap. Sixty-one (57.5%) knees were classified as having a ‘balanced gap’ (meaning that flexion and extension gaps were within 2 mm), 20 (18.9%) knees as having a ‘tight flexion gap’ (an extension gap at least 3mm more that the corresponding flexion gap), and 25 (23.6%) knees as having a ‘tight extension gap’ (a flexion gap at least 3mm more that the corresponding extension gap). Depending extension/flexion, and medial/lateral gap difference, the level of distal femoral cut and the rotation of femoral component was determined. Following the final bone cuts and completion of soft tissue release, assessment of the flexion and extension gap was repeated. Balanced flexion and extension gap (difference between flexion and extension gap ≤ 3mm) was confirmed in 99 cases (94%). A mobile bearing prosthesis (e motion FP, B.Braun Aesculap) was used.

One patient (bilateral TKAs) died of unrelated causes at postoperative 2 year. One knee was revised due to infection. One hundred three cases were followed up at least more than 4 years, 53 months in average. Overall survival rate is 97%. Average preoperative HHS scores and range of motion (ROM) were 65.4 points (range, 33~82) and 126.8 degrees (80~140). At the last follow-up, HHS score and ROM were 95.0 points (78~100) and 131.4 degrees (110~140). Statistically significant improvement in HHS score and ROM were observed (p< 0.05). The mean mechanical axis was 179.44±1.83° (175~184°) with 8 cases of outliers (more than ±3° of optimum). There was no radiolucency, osteolysis, subsidence, or loosening at the last follow-up.

In conclusion, navigation is an excellent predictor for achieving balanced soft tissue & flexion-extension gap in primary total knee arthroplasty. Navigated TKAs using soft tissue balancing technique showed excellent clinical results and is effective methods achieving accurate mechanical axis and reducing prosthetic alignment outlier.

Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net