header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

FINITE ELEMENT ANALYSIS OF THE BIRMINGHAM KNEE REPLACEMENT DURING DEEP KNEE FLEXION



Abstract

Introduction: Recently, high-flexion knee implants have been developed to provide for a large range of motion (ROM > 120°) after total knee arthroplasty (TKA). High-flexion knee implants are more likely subjected to large knee loads than conventional implants since knee joint forces increase with larger flexion angles. Highly conforming knee replacements are designed to minimise polyethylene peak stresses during (deep) knee flexion.

The Birmingham Knee Replacement (BKR, Jointmedica, UK) is a newly designed knee replacement which combines a high conformity during the complete ROM with the principles of rotating platform and high-flexion TKA. The main objective of this study was to analyze the mechanical performance of the BKR during its full ROM (0°–155°) and investigate whether its high conformity could be maintained during high-flexion. In addition, the BKR polyethylene loading computed in this study was compared with other mobile bearings.

Materials & methods: TKA performance was analyzed using a three-dimensional dynamic finite element (FE) model of the knee joint. The FE knee model consisted of a distal femur, a proximal tibia and fibula, a quadriceps and patella tendon, a non-resurfaced patella and TKA components. Tibio-femoral and patello-femoral contact were defined in the knee model. Three different posterior stabilised rotating platform TKAs were subsequently incorporated: the high-flexion BKR, the high-flexion PFC Sigma RP-F and the standard PFC Sigma RP (Depuy, J& J, USA). The polyethylene insert was modelled as a non-linear elastic-plastic material in each TKA system. Polyethylene loading parameters as well as the tibio-femoral contact point locations were computed during an entire flexion movement (0°–155°).

Results: In the normal flexion range (flexion ≤ 120°) the three knee implants behaved very similar except for the polyethylene loading at the post. At 120° of flexion, the contact stress at the dish was ±45 MPa for all implants whereas the maximal post-cam contact stress came down to 26.7 MPa for the BKR which was half the amount of contact stress experienced by both PFC Sigma implants. During high-flexion (flexion > 120°), the contact stress difference at the post between the BKR and the PFC Sigma RP-F became smaller and came down to 37.9 MPa and 60.7 MPa, respectively. The total amount of plastic deformation at maximal flexion (155°) was smaller for the BKR (577 mm3) in comparison with the Sigma RP-F (2256 mm3). Femoral rollback was negligible for the BKR in the high-flexion range in comparison with the Sigma RP-F (1.9 mm).

Discussion: A comparison between different geometrical models using finite element techniques is jeopardised by differences in element distribution within the various models. These differences may affect calculated parameters such as peak stress values. However, in this study the models were very similar which would indicate that the differences in stress patterns found are due to design differences rather than model artefacts.

The current study therefore indicates that the BKR benefits from its high conformity during the full ROM. Hence, the BKR demonstrated relatively low polyethylene stresses. The quadriceps efficiency during deep knee flexion may be lower in case of the BKR since the femoral rollback was negligible at these flexion angles. Whether this phenomenon is of any clinical relevance is unknown.

Correspondence should be addressed to ISTA Secretariat, PO Box 6564, Auburn, CA 95604, USA. Tel: 1-916-454-9884, Fax: 1-916-454-9882, Email: ista@pacbell.net