header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

VERTEBRAL STRENGTH UNDER COMPRESSION COMBINED WITH ANTERIOR BENDING: AN IN VITRO STUDY.



Abstract

Mechanical tests that have been carried out to validate finite-element models predicting vertebral strength concern vertebral bodies under axial compression. But in standing position gravity loads can induce a flexion component, especially for the last thoracic and first lumbar vertebrae. The aim of the study was to evaluate the strength of complete vertebrae under anterior compression.

15 isolated vertebrae T11-L2 (four women, one man, 88 ± 14 years old) were tested to failure. The load was applied at the one third of the vertebral body depth through a ball constrained in a hole. It was homogeneously distributed on the vertebral endplate through a polymetylmetacrylate (PMMA) layer which completely fills the concavity. The solid composed by the PMMA layer and the steel plate containing the hole for the ball was called “upper plate”. Its 3D orientation was assessed using the Polaris® motion capture system (accuracy: 0.6 mm, 0.6°) thanks to tripods. Before testing, the position of the marker-frames was assessed using 3D reconstructions (obtained by bi-planar X-rays) to express all the movements relatively to the vertebral frame.

The outcome data was the position of the upper plate. The load was calculated from the measurement of the vertical load (using the testing machine sensor) and the orientation of the upper plate (using the Polaris® system).

The mean flexion of the upper-plate is equal to 1° (± 0.7°) before the vertebra collapses. As this value is weak, the optoelectronic assessment could be removed during the test if the initial 3D orientation of the upper plate relatively to the vertebral frame is assessed.

This protocol allowed collecting with accuracy all the data necessary to validate models.

Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org