header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IMAGING OF THE MUSCULOSKELETAL SYSTEM USING 3D ULTRASOUND



Abstract

X-ray is the standard method for monitoring fracture healing however it is not ideal; signs of healing are not normally visible on X-ray until around 6–8 weeks post fracture. Ultrasonography allows the detection of both the initial haematoma, usually formed immediately after fracture, and the small calcium deposits laid down between broken bone ends in the first stages of fracture healing. It has been reported that these early indicators of the healing process are visible as early as 1–2 weeks after fracture. We use Freehand 3D Ultrasound to monitor the early stages of fracture healing as both the bone surface and surrounding soft tissues can be imaged simultaneously.

The Freehand 3D Ultrasound system consists of a standard Ultrasound machine, a PC running STRAD-WIN (Medical Imaging Group, Cambridge University) 3D software, and an optical tracking devise (NDI Polaris) to record the position and orientation of the Ultrasound probe during scanning. Images are transferred from the Ultrasound machine to the PC using RF capture through out a scan. Calibrating the system matches up the correct image with the correct probe position to produce a 3D dataset.

We segment features of interest on the sequence of 2D images to construct a 3D model. These models are rotatable and provide views of the scanned anatomy that are not otherwise achievable using conventional Ultrasound or X-ray. The 3D data set can also be resliced through any plane to provide further views.

To conduct a 3D Ultrasound scan takes the same amount of time as a conventional 2D scan. The production of the 3D model takes between 15–60 minutes depending on the level of detail required. Distances are measurable to within ±0.4mm meaning fracture gaps of sub-millimeter width can be resolved. The system has already been evaluated on healthy volunteers and a clinical study currently underway.

Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org