header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

STABILITY OF FEMORAL STEMS IN A CEMENT-IN-CEMENT REVISION MODEL DURING FATIGUE TESTING



Abstract

One method of reducing intra-operative complications in revision hip surgery is the cement-in-cement technique. Some concern exists regarding the retention of the existing fatigued cement mantle. It was hypothesised that leaving the existing fatigued cement mantle does not degrade the mechanical properties of the cement in cement revision construct. The aim of this research was to test this hypothesis using in vitro fatigue testing of analogue cement in cement constructs.

Primary cement mantles were formed by cementing a large polished stem into sections of tubular stainless steel using polymethylmethacrylate with Gentamicin. At this stage, the specimen was chosen to be in the test group or the control group. If in the test group, it underwent a fatigue of 1 million cycles. This was carried out in a specifically designed rig and a fatigue testing machine. Into these fatigued and unfatigued primary mantles, the cement in cement procedure was carried out. Both groups underwent a fatigue of again 1 million cycles. Subsidence of the stems and their inducible displacement was recorded. A power calculation preceded testing.

Completion of a Mann Whitney test on the endpoints of the subsidence curves revealed that there is no statistical difference between the data sets (means 0.51, 0.46, n=10 + 10, p = 0.496). This data was also calculated for the inducible displacement. Again, there was no statistical difference in the separate groups for this parameter (means 0.38, 0.36, p = 0.96). This methodology produces a complex 3 dimensional reconstruction of the cement in cement revision which replicates the in vivo structure. This reconstruction has undergone fatigue testing. Neither of these two aspects has been produced for the study of cement in cement revision before.

A fatigued primary cement mantle does not appear to degrade the mechanical properties of the cement in cement revision construct

Correspondence should be addressed to EORS Secretariat Mag. Gerlinde M. Jahn, c/o Vienna Medical Academy, Alserstrasse 4, 1090 Vienna, Austria. Fax: +43-1-4078274. Email: eors@medacad.org