header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

INTRA-OPERATIVE COMPUTER ASSISTED MEASURES OF INTERNAL TIBIAL ROTATION IN UKA AND TKA



Abstract

Information on knee kinematics during surgery is currently lacking. The aim of this study is to describe intra-operative kinematics evaluations during uni-compartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) by mean of a navigation system. Anatomical and kinematic data were acquired by Kin-Nav navigation system and analysed by a dedicated elaboration software developed at our laboratory. The study was conducted on 20 patients: 10 patients undergoing mini-invasive UKA and 10 patients undergoing posterior-substituting-rotating-platform TKA. In both group of patients the surgeon performed passive knee flexion immediately before and immediately after the prosthetic implant. Pattern and amount of internal/external tibial rotation in function of flexion were computed and significant changes between before and after implant were evaluated adopting Student’s t-test (significant level p=0.05).

UKA implant did not significantly change the pattern of internal/external tibial rotation, nor the total magnitude of tibial rotation (15.75°±7.27°) during range of flexion (10°–110°), compared to pre-operative values (17.87°±7.34°, p=0.25). Magnitude of tibial rotation in TKA group before surgery (8.00°±3.67°) was significantly less compared to UKA patients and did not changed significantly after implant (5.96°±4.88°, p=0.09). Pattern of rotation before and after TKA implant were different between each other and between pattern in UKA patients both before and after implant.

Intra-operative evaluations on tibial rotation during knee flexion confirmed some assumptions on knee implants from post-operative methods and suggest a more extensive use of surgical navigation systems for kinematic studies.

Correspondence should be addressed to Mr K Deep, General Secretary CAOS UK, Dept of Orthopaedics, Golden Jubilee National Hospital, Glasgow G81 4HX, Scotland. Email: caosuk@gmail.com