header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

QUANTIFICATION OF FRACTURE CALLUS VOLUME FROM CT SCANS



Abstract

Volume and density of fracture callus are important outcome parameters in fracture healing studies. These values provide an indication for the recovery of the mechanical function of the bone. Traditionally, fracture callus’ have been evaluated from radiographs, which represent 2D projections of the three-dimensional structures; therefore such an analysis can be affected by many artefacts. With the availability of Computer Tomography (CT) scanners for the evaluation of healing bones, it is now possible to perform precise, three-dimensional reconstructions of the fracture callus and therefore to evaluate true three-dimensional callus volumes and bone mineral densities. We wanted to make use of this technology in the evaluation of a study looking at the healing of a multifragmentary fracture in sheep after 4 and 8 weeks of healing time (Wullschleger et al, ANZORS, 2006). Our goal was to develop a protocol that would allow for the standardised calculation of cortical bone and callus tissue volumes with minimal user influence. Here, we report on the development of this evaluation protocol and some early results.

A clinical CT scanner was used to scan the experimental limbs, immediately after the sheep had been euthanized. Further analysis of the CT dataset was accomplished with the commercial computer software Amira. The region of interest was cropped to a 9 cm section of the bone shaft, guaranteed to comprise the entire fracture callus. Next, the cortical bone and the callus tissue were segmented by choosing appropriate threshold values for the measured grey levels. The volume of the segmented regions was then calculated by the software.

The application of this protocol to six CT scans from our experimental study resulted in average callus volumes of 12.21 ± 1.96 (standard deviation) cm2 after 4 weeks healing time and 14.28 ± 1.58 cm2 after 8 weeks healing time.

In conclusion, we demonstrated the feasibility of using CT data for a quantitative 3D analysis of callus volumes. While this technique is undoubtedly superior to the estimation of callus volumes from two-dimensional radiographs, the absolute accuracy of the results will need to be determined by comparison with histological data.

Correspondence should be addressed to David Haynes, PhD, Senior Lecturer, President ANZORS, at Discipline of Pathology, School of Medical Sciences, University of Adelaide, SA, 5005, Australia