header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

GENTAMICIN-HYDROXYAPATITE AND GENTAMICIN-RGD-HYDROXYAPATITE COATING FOR CEMENTLESS JOINT PROSTHESES: A HISTOMORPHOMETRICAL AND HISTOLOGICAL STUDY IN RATS



Abstract

Gentamicin was described with negative effects on bone formation. Arginin-Glycin-Aspartat (RGD) sequences play a key role in the adhesion of osteoblasts and have proven to improve implant integration. We have already shown a significant reduction in infection rates by a combined gentamicin-hydroxyapatite (HA) and gentamicin-RGD-hydroxyapatite coating in a rabbit infection model for cementless joint prostheses.

The purpose of the study was to assess whether the gentamicin-HA coating had a negative effect on the implant integration and new bone formation, compared to pure HA coating, and whether this could be enhanced by additional gentamicin-RGD-HA coating.

There were 5 study groups (8 animals per group) with 5 different stainless steel K-wires: uncoated, HA coated, gentamicin-HA, RGD-coated, gentamicin-RGD-HA coated. A 2.0 mm K-wire with one type of coating was introduced into the intramedullary canal of the tibia. The tibiae were harvested after 12 weeks and standardised longitudinal and transverse sections were performed to study new bone formation around the implant and implant bone contact. New bone formation and osseointegration of the implant surface was assessed using histomorphometrical methods by computerised semi-quantitative analysis and histological methods.

There were no significant differences between the HA and the gentamicin-HA group although new bone formation and implant bone contact were always higher for the pure HA coating. Additional RGD coating on the gentamicin-RGD-HA coating did not show significant improvement of bone formation and implant integration compared to gentamicin-HA. There was a very similar histological appearance of new bone formation between all groups with very low frequency of giant cells, indicating good biocompatibility.

Gentamicin-HA coating did not have significant negative effects on bone formation and bone implant contact, compared to pure HA coating. In combination with the excellent ability to reduce infection rates, gentamicin-HA coating may have a high interest in cement-less arthroplasty.



Correspondence should be addressed to Vasiliki Boukouvala at Department of Orthopaedic Surgery & Traumatology, University Hospital of Larissa, 110 Mezourlo, Larissa, GREECE. Tel: +30 2410 682722, Fax: +30 2410 670107, Email: malizos@med.uth.gr