header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

COMPUTER-ASSISTED NAVIGATION IMPROVES THE ACCURACY OF ASSESSING FIXED FLEXION IN KNEE ARTHROPLASTY – A CADAVERIC STUDY



Abstract

The purpose of this study was to assess the accuracy of clinical assessment compared to imageless computer navigation in determining the amount of fixed flexion during knee arthroplasty.

In fourteen cadaver knees, a medial para-patella approach was performed and the navigation anatomy registration process performed. The knees were held in various degrees of flexion with two crossed pins. The degree of flexion was first recorded on the computer and then on lateral radiographs. The cadaver knees were draped as for a knee arthroplasty and nine examiners (three arthroplasty surgeons, three fellows, and three residents) were asked to clinically assess the amount of fixed flexion. Three examiners repeated the process one week later.

The mean error from the radiograph in the navigation group was 2.18 degrees (95%CI 2.18+/−0.917) compared to 5.57 degrees (CI 5.57+/− 0.715) in the observer group. The navigation was more consistent with a range of error of only 5.5 degrees (standard deviation 1.59). The observers had a range of error of 18.5 degrees (S.D. = 4.06). When analysing the observers’ error with respect to flexion (+) and extension (−), they tended to under-estimate the amount of knee flexion (median error=−4) whereas the navigation was more evenly distributed (median error=0). The highest correlation was found between navigation and the radiograph r=0.96. The highest observer correlation with the radiograph was a consultant surgeon (r=0.91) and the worst was from a resident (r=0.74). The intra-class correlation coefficient was 0.88 for the three surgeons who repeated the measurements; their mean error was 3.5 degrees with a range of fifteen degrees.

The use of computer navigation appears to be more accurate in assessing the degree of knee flexion, with a reduced range of error when compared to clinical assessment. It is therefore less likely to leave the patient with residual fixed flexion after knee arthroplasty.

Correspondence should be addressed to: Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada