header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

VIBRATION ASSISTED FEMORAL IMPACTION BONE GRAFTING: REDUCING THE RISK OF FRACTURE WHILST IMPROVING BONE GRAFT STRENGTH



Abstract

Introduction: During femoral impaction bone grafting high forces and hoop strains may be generated with subsequent risk of fracture. Vibration is commonly used in civil engineering applications to increase aggregate compressive and shear strengths. We hypothesized that the use of vibration during impaction bone grafting, reduces the maximum hoop strains, and hence risk of fracture, and improves particle interlocking, producing a stronger aggregate.

Method: A series of femoral impaction bone graftings on physiological composite femurs, using morsellised graft from fresh frozen human femoral heads were performed. The standard Exeter impaction technique was used in the control group and vibration assisted compaction used in the study group. Total force imparted, hoop strains and subsidence rate were measured.

Results: Significantly more allograft was used in the vibration group than in the control group (73.1g, 79.5g, p=0.01). Higher mean peak loads were produced during proximal compaction in the control group (3.28kN) than in the vibration group (1.71kN, p=0.005). Higher mean peak and mid proximal hoop strains were generated in the control group (13.2%, 5.6%) compared to the vibration group (4.2%, 2.7% p=0.009, p=0.006). The mean total axial subsidence after 50,000 cycles was significantly less in the control group (2.47mm, SD 0.55) compared to the vibration group (1.79mm, SD 0.30, p=0.03).

Discussion: The use of vibration leads to reduced peak loads and hoop strains in the femur during graft compaction which may reduce the risk of femoral fracture. Additionally the resulting graft is better able to resist subsidence thus conferring improved mechanical stability. A safer, more flexible method to compact bone graft could lead to the more widespread use of IBG in revision hip surgery.

Correspondence should be addressed to Mr John Hodgkinson, BHS, c/o BOA, The Royal College of Surgeons, 35–43 Lincoln’s Inn Fields, London WC2A 3PE.