header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

P43 CONTACT STRESS DISTRIBUTION IN REAMED HIP HEMIARTHROPLASTY, A FINITE ELEMENT MODEL



Abstract

We previously demonstrated that cartilaginous tissue was induced on a reamed acetabular articulation in an ovine hemiarthroplasty model with three different femoral head sizes. At maximum loading during stance phase, the acetabular peak stresses immediately after reaming could reach approximately 80 MPa under direct implant-bone contact with in-vitro measurements.

We aimed to establish finite element (FE) models of the ovine hip hemiarthroplasty which examine stress distribution on the reamed acetabula by three head sizes. We hypothesized that the stress distribution did not differ between different sizes when the joint is congruent and that the peak stresses in the acetabulum immediately after reaming occurred in the dorsal acetabulum.

Three two-dimensional FE models of ovine hip hemi-arthroplasty were built; each comprised a head component, 25, 28, and 32 mm in diameter, and an acetabular component. The acetabular geometry was acquired from an ovine acetabular histological section. The head was moved to partly intersect with the acetabulum representing the reaming procedure and a congruent contact was confirmed. Cortical bone and cancellous bone were modelled as linear elastic, with moduli of 20 and 1.2 GPa, respectively. Variable moduli were also assessed. The finest mesh for each model consisted of over 100,000 four-node quadrilateral elements. Loading conditions were chosen to represent peak hip joint force developed during the stance phase. Stress distribution in the acetabular area in contact with the head was plotted against the articulating arc length.

The results confirmed that the stress distribution between different prosthetic head sizes in a reamed hemiarthroplasty model did not change when the joint was congruent. The peak compressive stresses occurred in the dorsal acetabulum with the 32 mm model being the highest at approximately 69 MPa, the 28 mm model at 63 MPa, and the 25 mm model at 54 MPa. An increase in the cancellous modulus and a decrease in the cortical modulus increased the peak stresses in the dorsal acetabulum.

This presents an indicative study into the effect of prosthetic femoral head sizes on the stress distribution in the acetabulum. The idealized 2-D models showed reasonable agreement when compared quantitatively with the in vitro study.

Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY.