header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

P4 REPAIRING RABBIT ARTICULAR CARTILAGE DEFECTS WITH AUTOLOGOUS BONE MARROW MESENCHYMAL STEM CELLS



Abstract

Once damaged, articular cartilage has limited capacity for self-repair due to their avascular and acellular nature. Tissue engineering approaches using cultured chondrocytes and biomaterials as scaffoldings hold promises for repairing cartilage defects. However, the source of articular chondrocytes is limited and the chon-drocytes may de-differentiate when cultured for a prolonged period. Bone marrow derived mesenchymal stem cells (BMSCs) have multi-differentiation potentials and autologous BMSCs are easy to obtain and culture with no/little immunological reaction when re-implanted.

24 NZW rabbits were used. Rabbit autologous BMSCs were obtained through marrow aspirations and expanded in culture under the chondrogenic induction media (DMEM, 10% FCS, plus 10ng/ml TGF-β1) for 3 weeks. A full-thickness articular cartilage defect (3 mm in diameter and 3 mm in depth) was created on both medial condyles in the rabbit. For experimental group (16 joints), the defects were filled immediately with alginate capsules containing autologous chondrogenic cells (8.5 x 104); for the control groups, the defects were filled with either alginate capsules alone (16 joints) or left untreated (16 joints). All the animals were terminated at 6 and 12 weeks after surgery and the cartilage samples were harvested for histology, immunochemistry and in situ hybridization examinations.

For histology, in the experimental group the defects were filled with immature hyaline-like cartilaginous tissues at 6 weeks; by 12 weeks the newly formed cartilage showing signs of remodeling and integrating into the surrounding articular cartilage. The expression of type II collagen in the newly formed cartilaginous tissues was confirmed by immunohistochemistry and by in situ hybridization methods. In the control groups, the defects were mainly filled with fibrous tissues in all the animals at the two time points examined. We have used Wakitani cartilage grading system for semi-quantitative histological evaluation. Significant lower scores (with superior histology) were found in the experimental group comparing to the two control groups.

Our results confirmed that full-thickness articular cartilage defects can be repaired by chondrogenically differentiated autologous BMSCs seeded into alginate capsules. Further studies are ongoing to explore the long term outcome of this treatment approach as well as using new scaffolds for cartilage tissue engineering.

Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY.