header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

FRICTION TESTING IN METAL-METAL BEARINGS USING BLOOD AS LUBRICANT



Abstract

Introduction: modern cementless joints depend on bony ingrowth for durable long term fixation. Increased friction and micromotion in the early weeks can prevent ingrowth and affect long-term success.

Most friction studies are conducted in a bovine serum- carboxymethylcellulose (bs-cmc) medium. Following implantation however, the joint is bathed in blood which contains macromolecules and cells. The effect of these on friction is not fully understood.

A progressive radiolucent line (fig 1) observed in some low clearance resurfacings raises the concern that increased friction may be affecting component fixation. The purpose of this investigation was to study the effect of clearance on friction for a given bearing diameter in the presence of blood as lubricant.

Methods: Six Birmingham Hip Resurfacing devices with a nominal diameter of 50mm each and a range of diametral clearances (80, 135, 175, 200, 243 and 306μm) were used. Frictional measurements were carried out on a Prosim Hip Friction Simulator (Simsol Simulation Solutions, Stockport, UK). The test was conducted sequentially with whole blood (viscosity 0.009Pas) and a BS-CMC mixture as the lubricants (viscosity 0.01Pas).

Results: Low clearance devices (80–175μm) generated higher friction with blood than with BS-CMC (fig 2). With blood as the lubricant, low clearance devices generated much higher friction than higher clearance devices (200–306μm).

Discussion: Ongoing research into the in vitro performance of bearings is performed in hip simulators with lubricants that are believed to simulate joint fluid in terms of viscosity. However these lubricants are unable to simulate the friction effects of macromolecules.

The results of this study suggest that reduced clearance bearings have the potential to generate higher friction when blood is the lubricant. this higher friction in the low clearance bearings may produce micromotion in the early postoperative period and hamper bony ingrowth resulting in impaired fixation with long-term implications for survival.

Correspondence should be addressed to The Secretary, BHS, c/o BOA, The Royal College of Surgeons, 35–43 Lincoln’s Inn Fields, London WC2A 3PE.