header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IN VIVO KINEMATICS OF MOBILE-BEARING KNEE ARTHROPLASTY DURING DEEP KNEE FLEXION



Abstract

The current study aimed to analyze in vivo kinematics during deep knee bending motion by subjects with fully congruent designed mobile-bearing total knee arthroplasty (TKA) allowing axial rotation and anterior/posterior (AP) gliding.

Twelve subjects were implanted with Dual Bearing-Knee (DBK, slot type: Finsbury, UK) prostheses. These implants include a mobile-bearing insert that is fully congruent with the femoral component throughout flex-ion and allows axial rotation and a 4–6 mm limited AP translation. Sequential fluoroscopic images were taken in the sagittal plane during loaded knee bending motion. In vivo kinematics of knee prostheses were computed accurately using a 2D/3D registration technique, which uses computer-assisted design models to reproduce the spatial position of metallic femoral and tibial components from calibrated single-view fluoroscopic images.

The average femoral component demonstrated 13.4° external axial rotation for 0° to 120° flexion. On average, the medial condyle moved anteriorly 6.2 mm for 0° to 100° flexion, then posteriorly 4.0 mm for 100° to 120° flexion. On average, the lateral condyle moved anteriorly 1.0 mm for0° to 40° flexion, then posteriorly 8.7 mm for 40° to 120° flexion. The average subject experienced a lateral pivot pattern from −5° to 60° flexion, a central pivot pattern from 60° to 100° flexion, and a rollback pattern which bilateral condyles moved backward from 100° to 120° of knee flexion.

Subjects with DBK mobile-bearing TKA in some-degree reproduced femoral external rotation during increasing knee flexion and bicondylar posterior rollback during terminal flexion, due to surrounding soft tissue structures. The geometry of replaced articular surfaces and mobility of the mobile-bearing insert produced lateral-to-central pivoting motions during the flexion cycle, a phenomenon not typically observed in normal knees. Using the current technique, we characterized the unique kinematics of fully congruent designed DBK mobile-bearing knee prostheses.

Correspondence should be addressed to Richard Komistek, PhD, International Society for Technology in Arthroplasty, PO Box 6564, Auburn, CA 95604, USA. E-mail: ista@pacbell.net